Interpretation of Immiscible WAG Repeat Pressure-Falloff Tests

2011 ◽  
Vol 14 (06) ◽  
pp. 687-701 ◽  
Author(s):  
B.A.. A. Stenger ◽  
S.A.. A. Al-Kendi ◽  
A.F.. F. Al-Ameri ◽  
A.B.. B. Al-Katheeri

Summary This paper reviewed the interpretation of repeat pressure-falloff (PFO) tests acquired in two vertical pattern injectors operating in a carbonate reservoir undergoing full-field development. Enhanced vertical-sweep conformance through phase mobility control in the presence of strong reservoir heterogeneity was the major expected benefit from an immiscible water-alternating-gas (WAG) displacement mechanism. PFO tests were carried out during the monophasic injection phase to determine well injectivity and reservoir properties, and were subsequently acquired at the end of each 3-month injection cycle. Analytical falloff-test interpretation relied on the use of the two zone radial composite model. Multiple falloff-test interpretations indicated that the two pattern vertical injectors behaved differently even though both had been fractured. The difference in behavior was linked to different perforated intervals and reservoir properties. Gas- and water-injection rates were showing differences between both pattern injectors as a consequence. Injected gas banks had a small inner radius and were almost undetectable at the end of the subsequent water cycle. Changes in the pressure-derivative slope at the end of the subsequent water-injection cycle indicated most likely the creation of an effective mixing zone of injected gas and water in the reservoir. Numerical finite-volume simulation was required to account for potential injected-fluid segregation and the heterogeneous multilayered nature of the reservoir. Repeat saturation logs acquired in observation wells monitored the saturation distribution away from the injection wells. Fluid saturations derived from the simulation model were showing a good agreement with the analytical results in general, although the need to account for gas trapping was confirmed. Eight planned development WAG injectors were repositioned as a consequence of WAG 1 and WAG 2 pattern performance.

2017 ◽  
Vol 5 (1) ◽  
pp. 37 ◽  
Author(s):  
Inyang Namdie ◽  
Idara Akpabio ◽  
Agbasi Okechukwu .E.

Bonga oil field is located 120km (75mi) southeast of the Niger Delta, Nigeria. It is a subsea type development located about 3500ft water depth and has produced over 330 mmstb of hydrocarbon till date with over 16 oil producing and water injection wells. The producing formation is the Middle to Late Miocene unconsolidated turbidite sandstones with lateral and vertical homogeneities in reservoir properties. This work, analysis the petrophysical properties of the reservoir units for the purpose of modeling the effect of shale content on permeability in the reservoir. Turbidite sandstones are identified by gamma-ray log signatures as intervals with 26-50 API, while sonic, neutron, resistivity, caliper and other log data are applied to estimate volume of shale ranging between 0.972 v/v for shale intervals and 0.0549 v/v for turbidite sands, water saturation of 0.34 v/v average in most sand intervals, porosity range from 0.010 for shale intervals to 0.49 v/v for clean sands and permeability values for the send interval 11.46 to2634mD, for intervals between 7100 to 9100 ft., Data were analyzed using the Interactive Petrophysical software that splits the whole curve into sand and shale zones and estimates among other petrophysical parameters the shale contents of the prospective zones. While Seismic data revealed reservoir thickness ranging from 25ft to over 140ft well log data within the five wells have identified sands of similar thickness and estimated average permeability of700mD. Within the sand units across the five wells, cross plots of estimated porosity, volume of shale and permeability values reveal strong dependence of permeability on shale volume and a general decrease in permeability in intervals with shale volume. It is concluded that sand units with high shale contents that are from0.500 to0.900v/v will not provide good quality reservoir in the field.


2021 ◽  
Vol 931 (1) ◽  
pp. 012003
Author(s):  
B S Shevchenko ◽  
R R Ziazev

Abstract A significant part of the initial geological reserves of LLC “RN-Uvatneftegas” oilfields are concentrated in deposits with abnormally low reservoir properties (porosity, permeability). The organization strategy of pressure maintenance of such oilfields significantly affect to the economic profitability of the reservoir development. One of the major tasks to achieve this goal is to determine the perfect time for application injection wells in oil production before forming the pressure maintenance system. Often, the solution to this issue turns out to be labor-intensive. In this regard, the analytical tool has been developed that allows rapidly assess the perfect time for transferring wells to water injection for pressure maintenance forming. The developed tool is based on a statistical analysis of the decline rate of horizontal wells fluid rates at the RN-Uvatneftegas oilfields. And also a comparative analysis of the results of the developed tool and other existing methods was carried out. The analysis showed that the developed tool is distinguished by its accuracy, simplicity and efficiency of work.


2021 ◽  
Author(s):  
Yuri Mikhailovich Trushin ◽  
Anton Sergeevich Aleshchenko ◽  
Oleg Nikolaevich Zoshchenko ◽  
Mark Suleimanovich Arsamakov ◽  
Ivan Vasilevich Tkachev ◽  
...  

Abstract The paper describes a methodology for assessing the impact of wax deposition in reservoir oil during cold water injection into heterogeneous carbonate reservoir D3-III of the Kharyaga field. The main goal is to determine the optimal amount of hot water that must be injected before switching to cold water without affecting the field development. The paper presents the results of laboratory studies to determine the thermophysical properties of oil, samples of net reservoir and non-reservoir rock, as well as the results of laboratory studies to determine the conditions and nature of wax deposition in oil when the temperature and pressure conditions change. Calculations were carried out to describe the physical model of oil displacement by water of various temperatures. A series of synthetic sector model runs was performed, which includes the average properties of the selected reservoir and the results of laboratory studies in order to determine the effect of cold water injection on the development performance.


1991 ◽  
Vol 14 (1) ◽  
pp. 347-352 ◽  
Author(s):  
P. L. Cutts

AbstractThe Maureen Oilfield is located on a fault-bounded terrace in Block 16/29a of the UK Sector of the North Sea, at the intersection of the South Viking Graben and the eastern Witch Ground Graben. The field was discovered in late 1972 by the 16/29-1 well, and was confirmed by three further appraisal wells. The reservoir consists of submarine fan sandstones of the Palaeocene Maureen Formation, deposited by sediment gravity flows sourced from the East Shetland Platform. The Palaeocene sandstones, ranging from 140 to 400 ft in thickness, have good reservoir properties, with porosities ranging from 18-25% and permeabilities ranging from 30-3000 md. Hydrocarbons are trapped in a simple domal anticline, elongated NW-SE, which was formed at the Palaeocene level by Eocene/Oligocene-aged movement of underlying Permian salt. The reservoir sequence is sealed by Lista Formation claystones. Geochemical analysis suggests Upper Jurassic Kimmeridge Clay shales have been the source of Maureen hydrocarbons. Estimated recoverable reserves are 210 MMBBL. Twelve production wells have been drilled on the Maureen Field. A further seven water injection wells have been drilled to maintain reservoir pressure.


Neft i gaz ◽  
2020 ◽  
Vol 1 (121) ◽  
pp. 69-76
Author(s):  
M.ZH. DOSZHANOV ◽  
◽  
B.N. ALYBAEV ◽  
M. K. KARAZHANOVA ◽  
D.A. AKHMETOV ◽  
...  

As the experience of field development shows, the unplanned growth of cracks in injection wells does not always have a positive effect on the development of oil reserves, but on the contrary, causes premature flooding of producing wells. At present, most of the fields are in the final stage of development, and increasing the coverage of the reservoir by flooding is an important task for the development of oil fields. The article considers and analyzes the influence of injection wells on the growth of hydraulic fracturing cracks and the relationship with oil production on the example of the Karazhanbas field (hereinafter referred to as the KBM).


2021 ◽  
Author(s):  
Mohand Ahmed Alyan ◽  
Jamie Scott Duguid ◽  
Atif Shahzad ◽  
Amna Ahmed Alobeidli ◽  
Alunood Khalifa Al Suwaidi ◽  
...  

Abstract This paper describes the field development planning strategy for appraising and developing an offshore reservoir area via extended reach extra-long maximum reservoir contact laterals drilled from an artificial island. These single production and injection laterals are completed in excess of 20,000 ft on top of tens of thousands feet of drilled well path to reach the drain landing point. These laterals have a dual purpose, as in addition to reservoir appraisal, is to maximize the productivity and injectivity in an on-going development of a tight carbonate reservoir. The well planning process starts from a careful selection of reservoir target coordinates to maximize the oil in place being developed from the artificial island and to enable reservoir testing and appraisal. From this data, initial 3D well designs are generated based on island location and rig capability to ensure ability to drill and run completion to total depth. The generated well tracks are used in a reservoir model to forecast production uplifts and inflow/outflow profiling along laterals. A strategic drilling step-out program has been implemented to extend drilling reach and completion deployment incrementally along with a reservoir surveillance program. The program was designed with built-in risk mitigations for any potential drilling and completion issues. The implemented program has enabled drilling into new areas and testing the reservoir properties at a small incremental cost of extending horizontal laterals. This has led to huge cost savings versus a very expensive appraisal program from a wellhead platform that included drilling a new well in addition to topside facility changes and pipelines conversions along with associated maintenance costs. The data gathered from these wells have enabled reduction of geologic uncertainty and de-risking of future developments. As a result, the field development footprint of developed oil resources was extended by additional 20% without the requirement of building additional drilling structures. Additionally, there is a well count reduction via lateral extension thus leading to capital costs saving. There were initial challenges encountered during lower completion deployment but they were resolved successfully in subsequent wells. An outcome of this strategy was the successful drilling of maximum reservoir contact wells with tens of thousands feet of drilled well path to reach the drain landing point and then with single horizontal drains exceeding 20,000 ft. The drilled wells resulted in unprecedented records in UAE and globally in terms of well total length, horizontal drain length and completion deployment.


2001 ◽  
Vol 4 (01) ◽  
pp. 26-35
Author(s):  
Richard W. Smith ◽  
Rodolfo Colmenares ◽  
Eulalio Rosas ◽  
Isaura Echeverria

Summary The El Furrial field is one of Venezuela's major field assets and is operated by PDVSA (Petroleos de Venezuela, S.A.), the national oil company. Its current production of more than 450,000 BOPD makes it a giant oil field. Development of the field, which has an average reservoir depth of approximately 15,000 ft, is in its mature stages owing to implementation of high-pressure gas injection. PDVSA has consistently followed a forward planning approach related to reservoir management. Using high-angle deviation drilling techniques allows development wells to be strategically located by penetrating the reservoir at high angles to optimize production rate, extend well life, increase reserves per well, reduce operating expenses, and reduce total field development costs. A reservoir model was constructed and simulated with detailed reservoir stratigraphy to determine realistic potential of high-angle wells (HAW's). Five wells had been drilled as of June 2000, and the first four wells have proved the effectiveness of the design. The philosophy, modeling technique, well design considerations, problems encountered, well results, and economic criteria provide a clear understanding of the risk of this technology not previously used at this depth in Venezuela. The result was the first HAW in the deep, challenging environment of eastern Venezuela. Results show that optimization objectives can be attained with HAW's, mainly increasing per-well production rate, maximizing per-well recovery, and extending the breakthrough time of gas or water from pressure maintenance and enhanced oil recovery projects. Well results indicate that the geological and simulation modeling technique is reliable and accurate. A pilot program shows that HAW technology provides major advantages to increase production rate and reduce the overall number of wells needed to reach production objectives. However, the project also has experienced a number of unexpected drilling problems.1 The costs associated with the total project are significant, but more importantly, this program becomes very attractive because of the long-term benefits of decreased water-cut related to current water injection; decreased gas breakthrough owing to high-pressure gas injection, and fewer wells required to meet production goals. Technical contributions include the following:The modeling technique of applying detailed stratigraphy to a full-scale reservoir model is accurate if performed with the appropriate objectives in mind.The application of state-of-the-art drilling techniques to attain high angles at deep drilling depth is possible; however, drilling problems caused by formation instability require more study and experience.This method can be applied to other fields in the eastern Venezuelan basin currently under, or planned to be under, enhanced recovery programs and development programs. Introduction The El Furrial field is one of several giant fields found northwest of Maturin, Venezuela, in what is described as the El Furrial thrust trend (location shown in Fig. 1). The field was discovered in 1986 with the FUL-1 well, which established production from the Naricual formation. A late 1996 study, using a full-field simulation model of the El Furrial field, showed that problems associated with gas or water breakthrough in producing wells from high-pressure gas injection and water injection can be reduced with this technology. The potential to reduce problems comes from drilling infill wells at a high angle between the advancing gas and water fronts. High-pressure gas injection was started in 1998 and was justified, in part, by this work and other associated studies. The field produces from two formations, the Naricual and Los Jabillos, giving a total gross thickness of more than 1,500 ft. The primary 1,200-ft-thick Naricual formation is divided into three major stratigraphic sequences - the Superior (upper), Medio (middle), and Inferior (lower). Net-to-gross ratio is typically 80%. Philosophy PDVSA has consistently maintained reservoir models through the years to aid in reservoir management.2 To date, eight full-field and numerous sector-simulation models have been built. Optimization of the field began in 1996. During the study, it was noted that predictions of conventional vertical infill wells drilled into the structure had short production lives because of water or gas breakthrough. The review identified the possibility of placing well trajectories between the advancing water and gas fronts. One benefit was that the production rate from new wells could be increased; this indicated that the number of development wells could be reduced, saving investment costs. Thus, the following objectives were determined.Define optimization alternatives of the El Furrial field well-development scheme. The use of nonconventional well completions such as vertical large interval single completions (LISC) and high-angle completion (HAC) wells may present a higher potential for meeting production needs at a lower total development cost.Define the most reasonable completion configuration for new wells in El Furrial field. It is probable that the entire Naricual acts as a single reservoir unit, with at least partial vertical communication existing in the majority of the field caused by fault juxtaposition and limited fractures associated with faults. Therefore, single completions in all of Naricual Superior and Medio, or Naricual Medio and Inferior, may present viable completion alternatives.Provide technical support to the Venezuelan Ministry of Mines and Energy, which approves operation philosophy, development, and completion practices. The HAW program was different from the previous accepted philosophy, so technical support was necessary to permit the FUL-63 pilot test well. High-Angle Wells This work was split into two parts. The first was an evaluation of HAC wells as an alternative to current vertical-well strategies. This includes the possible alternative of LISC completions for all of Naricual Superior and Medio. The second was additional simulation cases to test the potential development plan with only HAC wells in a full-scale reservoir model.


2019 ◽  
Vol 38 (10) ◽  
pp. 786-790
Author(s):  
Yong Keun Hwang ◽  
Helena Zirczy ◽  
Sudhish Bakku

Full-field reservoir models provide key input to annual business plans and reserve booking. They support the long-term field development plan by enabling well target optimization, identification of infill opportunities, water-flood management, and well-surveillance and intervention strategies. It is crucial to constrain the model with all available static and dynamic data to improve its predictive power for confident decision making. Across Shell's global deepwater portfolio, a model-based probabilistic seismic amplitude-variation-with-offset (AVO) inversion methodology is used to constrain reservoir properties as part of a comprehensive quantitative seismic reservoir modeling workflow. Promise, a proprietary probabilistic inversion tool, estimates values of reservoir properties and quantifies their uncertainties through repeated forward modeling and automated quality checking of synthetic against recorded seismic data. During workflow execution, available geologic, petrophysical, and geophysical data are incorporated. As a consequence, the reservoir models are consistent with all relevant subsurface data following their update through inversion. Model-based inversion establishes a direct link between static model properties and elastic impedances. Probabilistic inversion output is an ensemble of posterior static models. The inversion process automatically sorts through the ensemble. It can directly provide low, mid, and high cases of the inverted models that are ready to be used in hydrocarbon volume estimation and multiscenario dynamic modeling for history matching and production forecasting. For successful and efficient delivery of full-field reservoir models with uncertainty assessment using model-based probabilistic AVO inversion, early integration of interdisciplinary subsurface data and cross-business collaboration are key.


2021 ◽  
Author(s):  
Magdy Farouk Fathalla ◽  
Mariam Ahmed Al Hosani ◽  
Ihab Nabil Mohamed ◽  
Ahmed Mohamed Al Bairaq ◽  
Aditya Ojha ◽  
...  

Abstract This paper examines risk and rewards of co-development of giant reservoir has gas cap concurrently produce with oil rim. The study focus mainly on the subsurface aspects of developing the oil rim with gas cap and impact recoveries on both the oil rim and gas cap. The primary objective of the project was to propose options to develop oil rims and gas cap reservoir aiming to maximize the recovery while ensuring that the gas and condensate production to the network are not jeopardized and the existing facility constraints are accounted. Below are the specific project objectives for each of the reservoirs: To evaluate the heterogeneities of the reservoir using available surveillance information data.To evaluate the reservoir physics and define the depleted oil rims current Gas oil contact and Water Oil Contact using the available surveillance information and plan mitigate reservoir management plan.To propose strategies in co-development plan with increase in oil rim recovery without impact on gas cap recovery.To propose the optimum Artificial methods to extended wells life by minimize the drawn down and reduce bottom head pressure.To propose methods to reduce the well head pressure to reduce back pressure on the wells. The methodology adopted in this study is based on the existing full field compositional reservoir simulation model for proposing different strategical co-development scenario: Auto gas lift Pilot implementation phase.Reactivate using Auto gas lift all the in-active wells.Propose the optimum wells drilling and completion design, like MRC, ERD and using ICV to control water and gas breakthrough.Proposing different field oil production plateauPropose different water injection scheme The study preliminary findings that extended reach drilling (ERD) wells were proposed, The ability to control gas and water breakthrough along the production section will be handled very well by deploying the advanced flow control valves, reactivation of existing Oil rim wells with Artificial lift increases Oil Rim recovery factor, and optimize offtake of gas cap and oil rim is crucial for increase the recovery factories of oil Rim and gas cap.


Sign in / Sign up

Export Citation Format

Share Document