scholarly journals Depositional sequence interpretation using seismic and well data of offshore Central Sumatra Basin

2021 ◽  
Vol 944 (1) ◽  
pp. 012002
Author(s):  
T B Nainggolan ◽  
U Nurhasanah ◽  
I Setiadi

Abstract Offshore Central Sumatra Basin is an integral part of Central Sumatra Basin known for producing hydrocarbon basins. The derivation of stratigraphic study of seismic and well data is intended to improve accuracy of geological interpretation. Sequence stratigraphy studies have a significant role in exploratory studies to determine which depositional sequence can be inferred as hydrocarbon reservoir and its correlation in petroleum system. This study aims to identify biogenic gas sequential interpretation using seismic and well data of offshore Central Sumatra Basin. The procedure to analyze sequence stratigraphy is to identify stratigraphy surface markers using GR log, then map these markers to the seismic section that has been tied with good data to determine the distribution of each stratigraphy sequence. This study area has five depositional sequences, which are predominantly formed in marine depositional environments. Potential source rock in this area is at DS-1 which has a lacustrine depositional environment with euxinic conditions. The euxinic shale at the upper TST-1 deposit could be a source rock with hydrocarbon migration through faults. Biogenic gas reservoir potential is in Petani Formation (DS-5). Shale in MFS-5 and HST-5 could be a hydrocarbon trap, whereas LST-5 and TST-5 sandstone deposits can be a reservoir.

2020 ◽  
Vol 21 (1) ◽  
pp. 45
Author(s):  
Moh. Heri Hermiyanto Zajuli ◽  
Riecca Oktavitania ◽  
Ollybinar Rizkika

This study focused on the region of Central Sumatra that geologically into the Central and South Sumatra Basin. The subjects were from the Eocene shale in the areas such as the Kasiro, Sinamar, and Kelesa Formation. Shale of Central Sumatra Basin tend to have different characteristics with shale of South Sumatra Basin. Maceral content of vitrinite and liptinit on shale in South Sumatra Basin larger than Central Sumatra Basin shale. Oxic-anoxic conditions affecting to the abundance maceral-maceral in both basins. Shale of the  Kasiro Formation have a tend to indicate kerogen type I, and II, while shale of the Sinamar and Kelesa Formation included into kerogen type I, II and III. Shale from the three formation have the potential as an oil and gas with different characteristics. Shale of the Kasiro Formation shale has the potential source rock which can produce more oil than gas. Meanwhile shale of the Sinamar Formation  tend to be potentially as the source rock either oil or gas, oil shale and shale gas, but more potential as oil shale.  Key word : Liptinite, Vitrinite, Eocene, Central Sumatera Basin, South Sumatera Basin


GeoArabia ◽  
2008 ◽  
Vol 13 (2) ◽  
pp. 15-46 ◽  
Author(s):  
Geraint Wyn ap Gwilym Hughes ◽  
Osman Varol ◽  
Mokhtar Al-Khalid

ABSTRACT The Hanifa Formation in Saudi Arabia consists of a succession of carbonates, over 100 m thick, that were deposited during the Late Jurassic in an equatorial position on the west flank of the Neo-Tethys Ocean. It consists of the Hawtah and overlying Ulayyah members, each of which is considered as a third-order depositional sequence. The Hawtah Member is assigned an ?Early to Mid-Oxfordian age, based on brachiopod, nautiloid and coccolith evidence; ammonite, nautiloid, coccolith and foraminiferal evidence indicate a Late Oxfordian age for the Ulayyah Member. A detailed study of the microbiofacies and lithology of the late highstand succession of the Ulayyah member sequence was conducted in 41 cored wells distributed across Saudi Arabia. The aim of the study was to determine the most likely locations for porous and permeable grainstone lithofacies that host the Hanifa Reservoir in the region. A range of palaeoenvironments has been determined which include shallow-lagoon packstones and foraminiferal-dominated grainstones and deep-lagoon wackestones and packstones with Clypeina/Pseudoclypeina dasyclad algae. In addition, a series of basin-margin, shoal-associated biofacies are present that include stromatoporoid back-bank packstones and grainstones with the branched stromatoporoid Cladocoropsis mirabilis, bank-crest grainstones with encrusting and domed stromatoporoids. A few wells also proved the presence of intra-shelf, basin-flank mudstones and wackestones containing tetraxon sponge spicules, deep-marine foraminifera and coccoliths. The Hanifa Formation demonstrates the high environmental sensitivity of the Oxfordian biocomponents in Saudi Arabia. The study has exploited this feature to interpret the regional Late Oxfordian palaeoenvironmental variations, together with inferred hydrocarbon implications, with a moderately high degree of certainty. This essentially micropalaeontologically based study has revealed the approximate limit of an intra-shelf basin, with an irregular margin, located in the east-central part of the Saudi Arabian portion of the Late Oxfordian Arabian Plate carbonate platform. The basin is flanked by a belt of stromatoporoid banks that pass laterally into a back-bank facies before developing into a lagoonal facies. There is no evidence for shoreline of this basin, although the presence of rare charophytes, wood fragments and quartz grains in the northwest testifies to possible proximity of fluviatile input. The grainstone-dominated basin-margin facies presents good hydrocarbon reservoir facies and its juxtaposition to intra-shelf, potential source-rock basinal sediments provides important new exploration prospects in areas hitherto uninvestigated for hydrocarbon reservoirs, for which the overlying Jubaila Formation provides an efficient regional seal. The study provides a template for low-cost, high-value guidance for the selection of seismic survey sites in remote, under-explored areas where only a few wildcat well samples are available. The study could also be performed using cuttings samples where cores are not available. The varied biofacies within the Hanifa Formation could be applied for biosteering applications should this tool become necessary in coiled-tube, underbalanced horizontal development wells.


Palaios ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 95-114
Author(s):  
GARETT M. BROWN

ABSTRACT The ecological structure of ancient marine communities is impacted by the environmental gradients controlling assemblage compositions and the heterogeneous distribution of sediment types. Closely spaced, replicate sampling of fauna has been suggested to mitigate the effects of such heterogeneity and improve gradient analyses, but this technique has rarely been combined with similar sampling of lithologic data. This study analyses lithological and faunal data to determine the environmental gradients controlling the composition of Mississippian fossil assemblages of the lower Madison Group in Montana. Eighty-one lithological and faunal samples were collected from four stratigraphic columns in Montana, which represent the deep-subtidal, foreshoal, and ooid-shoal depositional environments within one third-order depositional sequence. Cluster analysis identifies three distinct lithological associations across all depositional environments—crinoid-dominated carbonates, peloidal-crinoidal carbonates, and micritic-crinoidal carbonates. Cluster analysis and nonmetric multidimensional scaling (NMS) identifies a highly diverse brachiopod biofacies and a solitary coral-dominated biofacies along an onshore-offshore gradient. Carbonate point count data and orientation of solitary corals indicate that substrate and wave energy are two potential variables that covary with the onshore-offshore gradient. Overlaying lithological information on the NMS indicates a secondary gradient reflecting oxygen that is expressed by increasing bioturbation and gradation from brown to dark gray carbonates to medium-light gray carbonates. Taken together, these findings demonstrates how combining closely spaced, replicate sampling of lithologic and faunal data enhances multivariate analyses by uncovering underlying environmental gradients that control the variation in fossil assemblages.


2015 ◽  
Vol 733 ◽  
pp. 140-143
Author(s):  
Jin Hang Cai

Metamorphic rock burial hill reservoir of Beier rift in Hailaer Basin, with large scale reservoir and high output has complex fault system. The fault through going direction roughly is NEE direction, and has wide fault section and lateral quickly changed fault displacement. Metamorphic rock reservoir can be divided into the vertical weathered fracture zone, crack and dissolved pores and caves development belt and tight zone. Accumulation is controlled by hydrocarbon ability of source rock, contacting relationship of source rock and reservoir, oil storage ability of reservoir, and vertical and lateral hydrocarbon migration ability of fault and unconformity surface. And formed top surface weathering crust accumulation pattern which the hydrocarbon migrated laterally along the unconformity surface, and interior reservoir pattern of crack broken zone accumulation which hydrocarbon migrated vertically along fault.


Author(s):  
Sebastian Grohmann ◽  
Susanne W. Fietz ◽  
Ralf Littke ◽  
Samer Bou Daher ◽  
Maria Fernanda Romero-Sarmiento ◽  
...  

Several significant hydrocarbon accumulations were discovered over the past decade in the Levant Basin, Eastern Mediterranean Sea. Onshore studies have investigated potential source rock intervals to the east and south of the Levant Basin, whereas its offshore western margin is still relatively underexplored. Only a few cores were recovered from four boreholes offshore southern Cyprus by the Ocean Drilling Program (ODP) during the drilling campaign Leg 160 in 1995. These wells transect the Eratosthenes Seamount, a drowned bathymetric high, and recovered a thick sequence of both pre- and post-Messinian sedimentary rocks, containing mainly marine marls and shales. In this study, 122 core samples of Late Cretaceous to Messinian age were analyzed in order to identify organic-matter-rich intervals and to determine their depositional environment as well as their source rock potential and thermal maturity. Both Total Organic and Inorganic Carbon (TOC, TIC) analyses as well as Rock-Eval pyrolysis were firstly performed for the complete set of samples whereas Total Sulfur (TS) analysis was only carried out on samples containing significant amount of organic matter (>0.3 wt.% TOC). Based on the Rock-Eval results, eight samples were selected for organic petrographic investigations and twelve samples for analysis of major aliphatic hydrocarbon compounds. The organic content is highly variable in the analyzed samples (0–9.3 wt.%). TS/TOC as well as several biomarker ratios (e.g. Pr/Ph < 2) indicate a deposition under dysoxic conditions for the organic matter-rich sections, which were probably reached during sporadically active upwelling periods. Results prove potential oil prone Type II kerogen source rock intervals of fair to very good quality being present in Turonian to Coniacian (average: TOC = 0.93 wt.%, HI = 319 mg HC/g TOC) and in Bartonian to Priabonian (average: TOC = 4.8 wt.%, HI = 469 mg HC/g TOC) intervals. A precise determination of the actual source rock thickness is prevented by low core recovery rates for the respective intervals. All analyzed samples are immature to early mature. However, the presence of deeper buried, thermally mature source rocks and hydrocarbon migration is indicated by the observation of solid bitumen impregnation in one Upper Cretaceous and in one Lower Eocene sample.


2020 ◽  
Vol 10 (8) ◽  
pp. 3207-3225
Author(s):  
Mohamed Ragab Shalaby ◽  
Muhammad Izzat Izzuddin bin Haji Irwan ◽  
Liyana Nadiah Osli ◽  
Md Aminul Islam

Abstract This research aims to conduct source rock characterization on the Narimba Formation in the Bass Basin, Australia, which is made of mostly sandstone, shale and coal. The geochemical characteristics and depositional environments have been investigated through a variety of data such as rock–eval pyrolysis, TOC, organic petrography and biomarkers. Total organic carbon (TOC) values indicated good to excellent organic richness with values ranging from 1.1 to 79.2%. Kerogen typing of the examined samples from the Narimba Formation indicates that the formation contains organic matter capable of generating kerogen Type-III, Type-II-III and Type-II which is gas prone, oil–gas prone and oil prone, respectively. Pyrolysis maturity parameters (Tmax, PI), in combination with vitrinite reflectance and some biomarkers, all confirm that all samples are at early mature to mature and are in the oil and wet gas windows. The biomarkers data (the isoprenoids (Pr/Ph), CPI, isoprenoids/n-alkanes distribution (Pr/nC17 and Ph/nC18), in addition to the regular sterane biomarkers (C27, C28 and C29) are mainly used to evaluate the paleodepositional environment, maturity and biodegradation. It has been interpreted that the Narimba Formation was found to be deposited in non-marine (oxygen-rich) depositional environment with a dominance of terrestrial plant sources. All the analyzed samples show clear indication to be considered at the early mature to mature oil window with some indication of biodegradation.


2017 ◽  
Vol 5 (2) ◽  
pp. SF225-SF242 ◽  
Author(s):  
Xun Sun ◽  
Quansheng Liang ◽  
Chengfu Jiang ◽  
Daniel Enriquez ◽  
Tongwei Zhang ◽  
...  

Source-rock samples from the Upper Triassic Yanchang Formation in the Ordos Basin of China were geochemically characterized to determine variations in depositional environments, organic-matter (OM) source, and thermal maturity. Total organic carbon (TOC) content varies from 4 wt% to 10 wt% in the Chang 7, Chang 8, and Chang 9 members — the three OM-rich shale intervals. The Chang 7 has the highest TOC and hydrogen index values, and it is considered the best source rock in the formation. Geochemical evidence indicates that the main sources of OM in the Yanchang Formation are freshwater lacustrine phytoplanktons, aquatic macrophytes, aquatic organisms, and land plants deposited under a weakly reducing to suboxic depositional environment. The elevated [Formula: see text] sterane concentration and depleted [Formula: see text] values of OM in the middle of the Chang 7 may indicate the presence of freshwater cyanobacteria blooms that corresponds to a period of maximum lake expansion. The OM deposited in deeper parts of the lake is dominated by oil-prone type I or type II kerogen or a mixture of both. The OM deposited in shallower settings is characterized by increased terrestrial input with a mixture of types II and III kerogen. These source rocks are in the oil window, with maturity increasing with burial depth. The measured solid-bitumen reflectance and calculated vitrinite reflectance from the temperature at maximum release of hydrocarbons occurs during Rock-Eval pyrolysis ([Formula: see text]) and the methylphenanthrene index (MPI-1) chemical maturity parameters range from 0.8 to [Formula: see text]. Because the thermal labilities of OM are associated with the kerogen type, the required thermal stress for oil generation from types I and II mixed kerogen has a higher and narrower range of temperature for hydrocarbon generation than that of OM dominated by type II kerogen or types II and III mixed kerogen deposited in the prodelta and delta front.


Sign in / Sign up

Export Citation Format

Share Document