scholarly journals Genetic variance and heritability estimation of hybridized pepper plants (Capsicum annuum L.) F2 progeny for begomovirus resistance in growth stage

2022 ◽  
Vol 951 (1) ◽  
pp. 012103
Author(s):  
E Kesumawati ◽  
Sabaruddin ◽  
E Hayati ◽  
N Hadisah ◽  
R Hayati ◽  
...  

Abstract Pepper is widely cultivated as a condiment and cash crop in Indonesia. However, Pepper yellow leaf curl disease (PepYLCD) caused by begomovirus is currently seriously affect the domestic pepper production. Breeding for begomovirus resistance material by crossing is currently necessary to overcome the constraint. The present study is aimed to determine the resistance of pepper (C. annuum) plants F2 progenies to begomovirus infection in the growth stage. Two local C. annuum accessions, BaPep-5 as a resistance donor for pepy-1 begomovirus resistance gene (locally called Perintis) and BaPep-4 as a susceptible parent (locally called Kencana) were crossed to generate F2 progenies. The research was conducted in Agricultural Extension Training Centre (BLPP) Saree and Horticulture Laboratory of Syiah Kuala University from February to July 2020. 500 F2 progenies were transplanted to the field along with 15 plants of each parent as control. The result suggested that plant height and crown width had the highest broad sense heritability value, whereas the dichotomous height, stem diameter, secondary branch, and tertiary branch had the lowest broad sense heritability value. Coefficient of genetic variance and coefficient of phenotypic variance from overall characteristics were relatively low which suggest the narrow sense to slightly narrow sense heritability.

2008 ◽  
Vol 133 (3) ◽  
pp. 396-407 ◽  
Author(s):  
John R. Stommel ◽  
Robert J. Griesbach

Considerable diversity exists in Capsicum L. germplasm for fruit and leaf shape, size, and color as well as plant habit. Using F1, F2, and backcross generations developed from diverse parental stocks, this report describes the inheritance patterns and relationships between unique foliar characters and diverse fruit and plant habit attributes. Our results demonstrate that pepper fruit color, shape, and fruit per cluster were simply inherited with modifying gene action. Broad-sense heritability for fruit color and shape and fruit per cluster was high, whereas narrow-sense heritability for these characters was moderate to low. Although fruit clustering was simply inherited, the number of fruit per cluster exhibited a quantitative mode of inheritance. High fruit counts per cluster were linked with red fruit color and anthocyanin pigmented foliage. Fruit shape was linked with immature fruit color and inherited independently of mature fruit color. Leaf color, length, and plant height were quantitatively inherited. Leaf shape did not vary, but leaf length varied and was positively correlated with leaf width. Broad-sense heritability for leaf characters, including leaf length, leaf width, and leaf color, was high. With the exception of leaf width, which exhibited low narrow-sense heritability, high narrow-sense heritability for leaf characters denoted additive gene action. Plant height displayed high broad-sense heritability. Moderate narrow-sense heritability suggested that additive effects also influence plant height. Analysis of segregating populations demonstrated that red and orange fruit color can be combined with all possible leaf colors from green to black. These results provide new data to clarify and extend available information on the inheritance of Capsicum fruit attributes and provide new information on the genetic control of leaf characters and plant habit.


2014 ◽  
Author(s):  
Jennifer Lachowiec ◽  
Xia Shen ◽  
Christine Queitsch ◽  
Örjan Carlborg

Efforts to identify loci underlying complex traits generally assume that most genetic variance is additive. Here, we examined the genetics of Arabidopsis thaliana root length and found that the narrow-sense heritability for this trait was statistically zero. This low additive genetic variance likely explains why no associations to root length could be found using standard additive-model-based genome-wide association (GWA) approaches. However, the broad-sense heritability for root length was significantly larger, and we therefore also performed an epistatic GWA analysis to map loci contributing to the epistatic genetic variance. This analysis revealed four interacting pairs involving seven chromosomal loci that passed a standard multiple-testing corrected significance threshold. Explorations of the genotype-phenotype maps for these pairs revealed that the detected epistasis cancelled out the additive genetic variance, explaining why these loci were not detected in the additive GWA analysis. Small population sizes, such as in our experiment, increase the risk of identifying false epistatic interactions due to testing for associations with very large numbers of multi-marker genotypes in few phenotyped individuals. Therefore, we estimated the false-positive risk using a new statistical approach that suggested half of the associated pairs to be true positive associations. Our experimental evaluation of candidate genes within the seven associated loci suggests that this estimate is conservative; we identified functional candidate genes that affected root development in four loci that were part of three of the pairs. In summary, statistical epistatic analyses were found to be indispensable for confirming known, and identifying several new, functional candidate genes for root length using a population of wild-collected A. thaliana accessions. We also illustrated how epistatic cancellation of the additive genetic variance resulted in an insignificant narrow-sense, but significant broad-sense heritability that could be dissected into the contributions of several individual loci using a combination of careful statistical epistatic analyses and functional genetic experiments.


Bragantia ◽  
2008 ◽  
Vol 67 (1) ◽  
pp. 101-108 ◽  
Author(s):  
Marcelo Marchi Costa ◽  
Antonio Orlando Di Mauro ◽  
Sandra Helena Unêda-Trevisoli ◽  
Nair Helena Castro Arriel ◽  
Ivana Marino Bárbaro ◽  
...  

The estimation of genetic parameters, especially in early generations, is very useful for directing the selection process in breeding programs. The present research was undertaken to estimate heritabilities in the broad sense, narrow sense and using parent-offspring regression in F3 soybean populations from six two-way crosses, originated from the Soybean Breeding Program of Faculdade de Ciências Agrárias e Veterinárias (UNESP), Jaboticabal campus. It was used the family design with common checks located ten plots apart. It was observed highly significant differences among families. The experimental coefficient of variation (CVe), the CVg/CVe ratio and the heritability showed wide variation among traits, being the highest values found for number of pods, number of seeds and grain yield, making evident the existence of variance to be exploited by breeding. The estimation of the heritability coefficients in the broad sense, narrow sense and by regression were close in most of the situations, showing that the largest part of genetic variance is of additive nature, in which simple selection methods can lead to satisfactory genetic gains.


1991 ◽  
Vol 116 (4) ◽  
pp. 724-727 ◽  
Author(s):  
Creighton L. Gupton ◽  
Barbara J. Smith

Experiments were conducted to estimate the relative importance of additive and dominance genetic variances and non-allelic interactions in the inheritance of resistance to Colletotrichum spp. in strawberry (Fragaria × ananassa Duch.). Progeny of 40 parents crossed in a Comstock and Robinson Design II Mating scheme were inoculated with three isolates of C. fragariae and one isolate of C. acutatum. Disease development on each plant was rated visually. Variance components were estimated and converted to genetic variances. Estimates of were six to 10 times higher than those for Within-family variance not accounted for by equaled 35% and 38% of the total genetic variance in females and males, respectively, indicating probable epistatic effects. The frequency distribution of disease severity ratings was bimodal in both experiments, suggesting major gene action. Narrow-sense heritability estimates were 0.37 and 0.26, and broad-sense heritability estimates were 0.87 and 0.85 for females and males, respectively. Narrow-sense heritability estimates are probably sufficient to produce gains from recurrent selection. Gains from selection of clonal value should be possible because of the high broad sense heritability estimates. It appears feasible to establish a broad genetic-based population resistant to Colletotrichum spp. from which selections could be evaluated per se and/or recombined to produce improved populations.


2017 ◽  
Author(s):  
Luke M. Evans ◽  
Rasool Tahmasbi ◽  
Matthew Jones ◽  
Scott I. Vrieze ◽  
Gonçalo R. Abecasis ◽  
...  

ABSTRACTHeritability is a fundamental parameter in genetics. Traditional estimates based on family or twin studies can be biased due to shared environmental or non-additive genetic variance. Alternatively, those based on genotyped or imputed variants typically underestimate narrow-sense heritability contributed by rare or otherwise poorly-tagged causal variants. Identical-by-descent (IBD) segments of the genome share all variants between pairs of chromosomes except new mutations that have arisen since the last common ancestor. Therefore, relating phenotypic similarity to degree of IBD sharing among classically unrelated individuals is an appealing approach to estimating the near full additive genetic variance while avoiding biases that can occur when modeling close relatives. We applied an IBD-based approach (GREML-IBD) to estimate heritability in unrelated individuals using phenotypic simulation with thousands of whole genome sequences across a range of stratification, polygenicity levels, and the minor allele frequencies of causal variants (CVs). IBD-based heritability estimates were unbiased when using unrelated individuals, even for traits with extremely rare CVs, but stratification led to strong biases in IBD-based heritability estimates with poor precision. We used data on two traits in ~120,000 people from the UK Biobank to demonstrate that, depending on the trait and possible confounding environmental effects, GREML-IBD can be applied successfully to very large genetic datasets to infer the contribution of very rare variants lost using other methods. However, we observed apparent biases in this real data that were not predicted from our simulation, suggesting that more work may be required to understand factors that influence IBD-based estimates.


1976 ◽  
Vol 18 (3) ◽  
pp. 419-427 ◽  
Author(s):  
D. R. Sampson ◽  
I. Tarumoto

Twenty-eight progenies with their eight parent cultivars of Avena saliva L. (2n = 6x = 42) were grown in F1, F2 and F3 in separate years; the F1 as spaced plants, the F2 and F3 as dense seeded populations. Additive genetic variance constituted most of the phenotypic variance of eight traits (heading date, plant height, stem diameter, grain yield and four components of yield) according to a Griffing Method 4, Model II analysis. Similarly, additive × year interactions were more important than nonadditive × year interactions. A Hayman-Jinks analysis of the same material but with the parents included showed that the additive component was 2 to 16 times larger than the dominance components in the F1 However in the F2 and F3 the dominance components became larger than the additive components for most traits instead of declining in importance as expected. Further, tests of fit to the hypotheses underlying the Hayman-Jinks analysis were negative in 8 of 24 cases. It is postulated that these discrepancies result from epistatic variance which caused an upward bias in the dominance estimates. The calculation and uses of two estimates of narrow-sense heritability are discussed.


Author(s):  
Lupu Nicolae ◽  
Vasile Moldovan ◽  
Rozalia Kadar ◽  
Ionut Racz

For wheat ( Triticum aestivum ), periods of prolonged rainfall and high humidity after the grain has ripened and before it can be harvested can contribute to, so called pre-harvest sprouting (PHS), which can be considered as a premature germination. PHS can be defined a complex quantitative character having two important components: sprouting score and falling number. The two these components are controlled by gene effects which are predominant of additive nature. Our research have been conducted on parental, F 1, F2, backcross generations means, from 4 cyclic crosses with common parents differing in their reaction to PHS and falling number. Broad sense heritability coefficients for PHS score showed high values in the case of majority hybrids that indicate the important role of genotype in phenotypic expression of reaction to sprouting. Concerning to falling number, broad sense heritability coefficients had smaller values. For wheat as a self pollinated crop, is preferable to be used narrow sense heritability which reflects additive genetic contribution to phenotypic expression of sprouting or falling number, because only additive gene effects can be fixed to progeny. When PHS score, or falling number have high values for narrow sense heritability (higher 50), is recommended the beginning of selection in F 2 and in these cases can be successful applied pedigree selection. Concluding, high heritabilities associated with other genetic parameters can be important tools at hand of breeders. They indicated that wheat selection for PHS tolerance or falling number would be effective in populations involving crosses of sensitive and tolerant parents.


2011 ◽  
Vol 56 (3) ◽  
pp. 165-172
Author(s):  
Jane Aleksoski ◽  
Ana Korubin-Aleksoska

The mode and level of inheritance of green and dry mass yield per stalk were investigated in four parental genotypes (Burley - B 2/93, Suchum - S1, Suchum - S2 and Prilep - P-84) and in their six diallel F1 hybrids. The trial was set up in 2007, 2008 and 2009 in the field of Tobacco Institute-Prilep in a randomized block design with four replications. The aim of the investigation was to estimate the heritability as an indicator of the inheritance of the yield as one of the most important quantitative characters of tobacco, in order to give suggestions for the selection of parental genotypes and directions for the creation of new varieties. The mode of inheritance was estimated according to the test - significance of the mean value of F1 progeny compared to the parental average. Narrow-sense heritability was estimated after Allard (1960), while broad-sense heritability and genetic components were estimated after Mather and Jinks (1974). The mode of inheritance in the hybrids was different. Positive heterosis for green and dry mass yields per stalk was recorded in S1 x S2. Negative heterosis for green mass yields per stalk was recorded in S1 x P-84 and S2 x P-84, while for dry mass yield it was recorded in S1 x P-84. Inheritance of the characters during the three years of investigation was identical. The higher heritability index of both types was recorded for dry mass yield. As regards inheritance of the yield, the values of broad-sense heritability were higher than those of narrow-sense heritability.


2021 ◽  
Author(s):  
Ghasem Eghlima ◽  
Mohsen Sanikhani ◽  
Azizollah Kheiry ◽  
Javad Hadian

Abstract Glycyrrhiza glabra L. is an herbaceous, perennial plant with high distribution in Iran. Genetic variability, heritability and correlation among characters in 22 populations of G. glabra L. were studied. The genetic parameters among the traits including phenotypic variances, genotypic variances, genotype by environment variances, broad-sense heritability and genotypic and phenotypic correlation coefficients were studied. Variance components analysis showed that the extent of phenotypic coefficient of variation (PCV) was fairly higher for all the examined traits compared with genotypic coefficient of variation (GCV). Glabridin (GLA) exhibited high GCV and PCV (156.07% and 156.68%, respectively). The broad sense heritability varied from 38.92–99.79% and narrow sense heritability ranged from 9.70 % to 24.94%. Heritability of GLA, glycyrrhizic acid (GLY), liquiritin (LI), liquiritigenin (LIQ), rutin (RU) and rosmarinic acid (RA) were very high, exhibiting more than 97% heritability. Therefore, these critical characteristics can efficiently be selected and inherited in breeding programs. In most traits, the genotypic correlations showed the same direction as the phenotypic correlations. The contents of GLA and LIQ showed a positive correlation with majority of morphological traits. Therefore, selecting individual plants having desired morphological traits can be correlated with high contents of bioactive compounds in the harvested root.


Sign in / Sign up

Export Citation Format

Share Document