scholarly journals Seismic Behaviour of Rc Building Located in Erbil, Iraq and Strengthening by Using Steel Frame Sections Precast Bolt-Connected Steel-Plate Reinforced Concrete

2022 ◽  
Vol 961 (1) ◽  
pp. 012012
Author(s):  
S F Sadeq ◽  
B R Muhammad ◽  
A J Al-Zuheriy

Abstract This paper present outside strengthening with precast substructures, is a relatively new retrofitting approach that has recently attracted the attention of researchers. Outside strengthening with precast substructure, in contrast to member-level strengthening technologies (e.g., FRP strengthening, enlarging member section areas, and replacing rebars), is a structure-system reinforcement method that integrates the substructure and the original structure, improves overall seismic performance, and changes the deformation mode of the entire structure. The seismic capability of the exterior strengthening with precast bolt-connected steel-plate reinforced concrete is critically evaluated in this paper (PBSPC) Case studies are used to demonstrate the working principles, numerical methodologies, and design approaches. The simulation results were similar with prior studies, demonstrating that the numerical model was effective. The use of building steel representations reduces construction time, increases efficiency, and lowers costs. The goal of this technology is to lower the seismic displacement demand of nonductile. Current RC structures have steel frames connecting to the building floors. These frameworks run parallel to the structure of the building. Ganjan Life City, a building in Erbil, Iraq, is being used as a case study. The ISC 2017 and ASCE 7-10 earthquake codes were used to evaluate the building’s seismic performance before and after the reinforcement. The analysis’ findings suggest that the recommended technique is correct.

2019 ◽  
Vol 1 (Special Issue on First SACEE'19) ◽  
pp. 31-41 ◽  
Author(s):  
Alper Ilki ◽  
Ugur Demir

In the areas under high earthquake risk, the impact of fire damage on the seismic performance of the reinforced concrete (RC) structures ought to be realistically taken into account while assessing the fire damage to develop reuse/repair/replace strategies through the remaining service life. In the scope of this study, a literature review is conducted on the changes of mechanical characteristics of concrete and reinforcement caused by a fire with a particular emphasis on the post-cooling stage. Post-cooling behaviour of RC members is different than the behaviour under elevated temperatures and hence it is of vital importance on structural seismic performance assessment after a fire. Apart from material-wise assessment methodologies, post-fire seismic performance of RC structural members is also discussed through post-fire simulated seismic loading tests conducted on full-scale cast-in-place and precast columns. The test results pointed out to a reduction in lateral load bearing capacity of the cast-in-place columns subjected to fire whereas fire-exposed precast columns demonstrated better performance in terms of residual lateral load capacity due to the lower axial load and larger heights. All columns exhibited satisfactory performance in terms of ductility.


Author(s):  
Tae-Hoon Kim

The aim of this study is to analytically assess the seismic performance of reinforced concrete (RC) columns with interlocking hoops using a novel damage index, and to provide data for developing next generation seismic design criteria. Seismic performance of RC columns is controlled by the level of confinement provided by transverse steel. Interlocking hoops are commonly used in RC columns because they can provide more effective confinement than rectangular hoops. Three RC interlocking columns were tested under a constant axial load and a cyclically reversed horizontal load. A computer program, RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), is used to analyze RC structures. Novel damage indices aim to provide a means of quantifying numerically the performance level in RC columns with interlocking hoops sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of interlocking columns is verified by comparison with the experimental results.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yong Li ◽  
Meng-Fei Xie ◽  
Jing-Bo Liu

With the continuous development of the ductility capacity concept for seismic design of bridges, the ductility capacity of many existing bridges does not meet the requirements of the current code for seismic performance because of the low reinforcement ratio and reinforcement corrosion of reinforced concrete (RC) piers. Because of their superior mechanical properties and low price, basalt fibre-reinforced polymer (BFRP) sheets have potential application in the seismic retrofits field of existing bridges. To study the seismic strengthening effect of RC pier columns, scaled specimens with standard reinforcement ratios, with low reinforcement ratios according to the past code and with corroded reinforcements, were designed and manufactured and then wrapped and pasted with BFRP sheets on the plastic hinge areas. Pseudostatic tests were conducted to verify the seismic performance of the strengthened and unstrengthened specimens. Experimental results showed that the ultimate flexural capacity, deformation capacity, and energy dissipation capacity of strengthened RC pier columns were superior. Especially for strengthened specimens with low reinforcement ratios or corrosion reinforcement, their seismic performance could rival than that of columns with standard reinforcement ratios, which showed the advantage of BFRP sheets in the seismic retrofitting of existing bridge piers.


2013 ◽  
Vol 405-408 ◽  
pp. 933-939
Author(s):  
Dai Guo Chen ◽  
Yong Yao ◽  
Yong Jun Deng ◽  
Hai Jun Wang

Seismic fortification intensity has been adjusted in some areas which were affected in The Wenchuan-earthquake. It was seismic strengthening for most of the buildings especially the public buildings after the adjustment. In order to ensure the seismic performance of the structure after reinforcement ,the analysis method based on performance is gradually applied in the large and complex engineering structure analysis .The paper uses a large span Sports Training Center under construction as background. According to the situation that the fortification intensity by 6 degrees improved to 7 degrees ,the paper uses Push-over method to analysis elastic-plastic of the finite element models ,which including the mild steel damper before and after reinforcement ,under the action of the rare earthquake of 7 degrees. The paper is studying the internal force,deformation and destruction of the structure in the action of the rare earthquake,comparing the dynamic characteristics and seismic performance of the models, and researching distribution of weak links and plastic hinge of the models under the large earthquake. The results show that the models can meet collapse resistant checks less than 7 degrees of the rare earthquake before and after reinforcement. The second floor is relatively weak of the original structure,and can emerge local damage easily. But the structures stiffness is more uniformly after reinforcement, and has large resistance of the collapsed ability.


Prevailing analysis and design of reinforced concrete (RC) structures is a critical stage in the construction industry to deliver the projects within the estimated construction time period and within the budget. The selection of suitable structural engineering software to perform the analysis and design tasks is not an easy matter of fact, especially with the existence of many specialized software in this domain such as Robot Structural Analysis, MIDAS Gen, SAP 2000, STAAD.PRO, Tekla Structural designer, S-Frame and many others. So a strong comparison between the existing software must be made before taking the final decision of selecting any software. The main goal of this paper is to present overall guidance for selection of the suitable software among the most common software used for the analysis and design of RC structures along with the supported design codes, analysis types and design modules incorporated in each software. The technical specifications, characteristics, application domains, incorporated structural design codes, limitation, technical popularity and capabilities of the existing most common used software were studied and compared. Based on the performed study, eleven software were selected and presented as a useful guideline for the structural engineers in the analysis and design of RC structures. In this paper, a complete guideline including the required technical information for structural engineers to choose the suitable software for analyzing and designing of the RC structures is presented.


2018 ◽  
Vol 33 ◽  
pp. 03026
Author(s):  
Oksana Kurakova

Erection of high quality buildings and structures within a reasonable time frame is the crucial factor for the competitiveness of any construction organization. The main material used in high-rise construction is insitu reinforced concrete. The technology of its use is directly related to the use of formwork systems. Formwork systems and formwork technologies basically determine the speed of construction and labor intensity of concreting operations. Therefore, it is also possible to achieve the goal of reducing the construction time and labor intensity of works performed by improving the technology of formwork systems use. Currently there are unresolved issues in the area of implementation of monolithic technology projects, and problems related to the selection of a formwork technology, high labor intensity of works, poor quality of materials and structures, etc. are the main ones. The article presents organizational and technological measures, by means of which introduction it is possible to shorten the duration of construction. A comparison of operations performed during formwork installation according to the conventional technology and taking into account the implemented organizational and technological measures is presented. The results of a comparative analysis of economic efficiency assessments are also presented on the example of a specific construction project before and after the implementation of the above mentioned measures. The study showed that introduction of the proposed organizational and technological model taking into account optimization of reinforcing and concreting works significantly improves the efficiency of a high-rise construction project. And further improvement of technologies for the use of insitu reinforced concrete is a promising direction in the construction of high-rise buildings.


Sign in / Sign up

Export Citation Format

Share Document