scholarly journals A Technical Review on Self-Healing Control Strategy for Smart Grid Power Systems

2021 ◽  
Vol 1055 (1) ◽  
pp. 012153
Author(s):  
D Sarathkumar ◽  
M Srinivasan ◽  
Albert Alexander Stonier ◽  
Ravi Samikannu ◽  
Narasimha Rao Dasari ◽  
...  
Author(s):  
Surender Reddy Salkuti

The development smart grids have made the power systems planning and operation more efficient by the application of renewable energy resources, electric vehicles, two-way communication, self-healing, consumer engagement, distribution intelligence, etc. The objective of this paper is to present a detailed comprehensive review of challenges, issues and opportunities for the development of smart grid. Smart grids are transforming the traditional way of meeting the electricity demand and providing the way towards an environmentally friendly, reliable and resilient power grid. This paper presents various challenges of smart grid development including interoperability, network communications, demand response, energy storage and distribution grid management. This paper also reviews various issues associated with the development of smart grid. Local, regional, national and global opportunities for the development of smart grid are also reported in this paper.


2019 ◽  
Vol 2 (S1) ◽  
Author(s):  
Friederike Wenderoth ◽  
Elisabeth Drayer ◽  
Robert Schmoll ◽  
Michael Niedermeier ◽  
Martin Braun

Abstract Historically, the power distribution grid was a passive system with limited control capabilities. Due to its increasing digitalization, this paradigm has shifted: the passive architecture of the power system itself, which includes cables, lines, and transformers, is extended by a communication infrastructure to become an active distribution grid. This transformation to an active system results from control capabilities that combine the communication and the physical components of the grid. It aims at optimizing, securing, enhancing, or facilitating the power system operation. The combination of power system, communication, and control capabilities is also referred to as a “smart grid”. A multitude of different architectures exist to realize such integrated systems. They are often labeled with descriptive terms such as “distributed,” “decentralized,” “local,” or “central." However, the actual meaning of these terms varies considerably within the research community.This paper illustrates the conflicting uses of prominent classification terms for the description of smart grid architectures. One source of this inconsistency is that the development of such interconnected systems is not only in the hands of classic power engineering but requires input from neighboring research disciplines such as control theory and automation, information and telecommunication technology, and electronics. This impedes a clear classification of smart grid solutions. Furthermore, this paper proposes a set of well-defined operation architectures specialized for use in power systems. Based on these architectures, this paper defines clear classifiers for the assessment of smart grid solutions. This allows the structural classification and comparison between different smart grid solutions and promotes a mutual understanding between the research disciplines. This paper presents revised parts of Chapters 4.2 and 5.2 of the dissertation of Drayer (Resilient Operation of Distribution Grids with Distributed-Hierarchical Architecture. Energy Management and Power System Operation, vol. 6, 2018).


Author(s):  
Ruchi Gupta ◽  
Deependra Kumar Jha ◽  
Vinod Kumar Yadav ◽  
Sanjeev Kumar

2014 ◽  
Vol 513-517 ◽  
pp. 772-776
Author(s):  
Chen Wang ◽  
Hong Ai ◽  
Lie Wu ◽  
Yun Yang

The smart grid that the next-generation electric power system is studied intensively as a promising solution for energy crisis. One important feature of the smart grid is the integration of high-speed, reliable and secure data communication networks to manage the complex power systems effectively and intelligently. The goal of smart grid is to achieve the security of operation, economic efficient and environmental friendly. To achieve this goal, we proposed a fine-grained access control model for smart grid. In order to improve the security of smart grid, an access-trust-degree algorithm is proposed to evaluate the reliability of the user who want to access to the smart grid.


Sign in / Sign up

Export Citation Format

Share Document