scholarly journals Break even analysis & response of longer span frames with or without post-tensioned beams in multipurpose hall

2021 ◽  
Vol 1197 (1) ◽  
pp. 012011
Author(s):  
Aniket Patkar ◽  
Santosh Mukkawar

Abstract In this paper analyzed the RC a nd PT Beam against variation in the clear span length of the beam. This work includes the design and estimate of Cost/Beam from 5m span up to 15m span length of the beam. Also, The response of the frame following two variation in its modelling. Initially, The primary model consists of a conventional RCC frame with all beams and columns as RCC. The secondarily model considers peripheral beams as RCC and interior beams with PT. Such as ETABS software used to designed RC beam element and ADAPT-PTRC used to designed PT beam element. However it has been note that variation of cost with respect to the span of beam where the break-even point between RCC and PT technique is approx 7m Span. Also the control on deflection of beam by restrict the depth of beam by using unbonded Post-tensioned prestress concrete beam method. There is very good understand all aspects PT beam better than as compared with to RC beam in deflection against longer span length of beams. This paper gives suggestion about to reach a decidedly conclusion regarding which technique is superior over one another.

2019 ◽  
Vol 8 (3) ◽  
pp. 1484-1488

This work examines the results on the Reinforced concrete beam element under different temperature scenario. The most contagious or maximum temperature distribution in the RC member will be presumed. In Reinforced concrete beam the flexural failure is vigorously reached by the temperature, and also steel reinforcement has experienced. The present work has studied the two-dimensional static analysis in the ABAQUS finite element software when the temperature remains in the steady-state condition during incremental loading applied in the member. The numerical results show that the temperature distribution in the beam element,load versus deflection curve ,ultimate load, Maximum principal stresses are done in the RC beam under different temperature. There fore the reinforced concrete 3D model is usefull in analytical tool for prediction of the behaviour of RC beam under temperature.


Author(s):  
Diego L. Castañeda-Saldarriaga ◽  
Joham Alvarez-Montoya ◽  
Vladimir Martínez-Tejada ◽  
Julián Sierra-Pérez

AbstractSelf-sensing concrete materials, also known as smart concretes, are emerging as a promising technological development for the construction industry, where novel materials with the capability of providing information about the structural integrity while operating as a structural material are required. Despite progress in the field, there are issues related to the integration of these composites in full-scale structural members that need to be addressed before broad practical implementations. This article reports the manufacturing and multipurpose experimental characterization of a cement-based matrix (CBM) composite with carbon nanotube (CNT) inclusions and its integration inside a representative structural member. Methodologies based on current–voltage (I–V) curves, direct current (DC), and biphasic direct current (BDC) were used to study and characterize the electric resistance of the CNT/CBM composite. Their self-sensing behavior was studied using a compression test, while electric resistance measures were taken. To evaluate the damage detection capability, a CNT/CBM parallelepiped was embedded into a reinforced-concrete beam (RC beam) and tested under three-point bending. Principal finding includes the validation of the material’s piezoresistivity behavior and its suitability to be used as strain sensor. Also, test results showed that manufactured composites exhibit an Ohmic response. The embedded CNT/CBM material exhibited a dominant linear proportionality between electrical resistance values, load magnitude, and strain changes into the RC beam. Finally, a change in the global stiffness (associated with a damage occurrence on the beam) was successfully self-sensed using the manufactured sensor by means of the variation in the electrical resistance. These results demonstrate the potential of CNT/CBM composites to be used in real-world structural health monitoring (SHM) applications for damage detection by identifying changes in stiffness of the monitored structural member.


Author(s):  
M.P. Limongelli ◽  
D. Siegert ◽  
E. Merliot ◽  
J. Waeytens ◽  
F. Bourquin ◽  
...  

2017 ◽  
Vol 737 ◽  
pp. 441-447 ◽  
Author(s):  
Stefanus Kristiawan ◽  
Agus Supriyadi ◽  
Senot Sangadji ◽  
Hapsara Brian Wicaksono

Degradation of reinforced concrete (RC) element could lead to a reduction of its strength and serviceability. The degradation may be identified in the form of spalling of concrete cover. For the case of RC beam, spalling of concrete cover could occur at the web of the shear span due to corrosion of the web reinfocements. The shear strength of the damaged-RC beam possibly will become less conservative compared to the corresponding flexural strength with a risk of brittle failure. Patch repair could be a choice to recover the size and strength of the damaged-RC beam. This research investigates the shear failure of patched RC beam without web reinforcements with a particular interest to compare the shear failure behaviour of patched RC beam and normal RC beam. The patch repair material used in this research was unsaturated polyester resin (UPR) mortar. The results indicate that the initial diagonal cracks leading to shear failure of patched RC beam occur at a lower level of loading. However, the patched RC beam could carry a greater load before the diagonal crack propagates in length and width causing the beam to fail in shear.


2021 ◽  
pp. 1-15
Author(s):  
Jin-Ha Hwang ◽  
Seung-Ho Choi ◽  
Deuck Hang Lee ◽  
Kang Su Kim ◽  
Oh-Sung Kwon

2013 ◽  
Vol 351-352 ◽  
pp. 743-746
Author(s):  
Soo Yeon Seo ◽  
Yu Gun Chung

This paper presents an analytical result about strength deterioration of reinforced concrete (RC) beams due to damage by fire. For the evaluation of the result, three RC beam specimens were made and two of those were exposed to fire. And then beam test was performed for those including non-heated specimen to evaluate the strength deterioration due to the fire damage under simple support condition. Strength decrease of materials due to the fire was evaluated through material test for concrete and reinforcements, respectively. Nonlinear Finite element (FE) analysis was performed by considering the decrease of materials due to fire. The analysis results showed that the structural behavior of fire-damaged RC beam was able to be simulated by using FE analysis with consideration of the reduction of material capacity due to fire.


2015 ◽  
Vol 773-774 ◽  
pp. 911-915 ◽  
Author(s):  
J.M. Irwan ◽  
R.M. Asyraf ◽  
N. Othman ◽  
H.B. Koh ◽  
A.K. Aeslina ◽  
...  

This paper reports the results on cracking propagation and pattern of reinforced concrete (RC) beam conducted using irregular-shaped Polyethylene Terephthalate (IPET) as a fibre. Three volume fraction of IPET fibre is used namely, 0.5%, 1% and 1.5%. All RC beam specimens are tested under four point loading under flexural capacity behaviour. Prior to structural test, the materials properties which include the compressive and tensile strength test and modulus of elasticity test were determined. The results than are compared with control RC beam. It is found that the RC beam with IPET fibre does not significantly change the behaviour of failure mode, cracking propagation and pattern compared to control RC beam.


2014 ◽  
Vol 31 (5) ◽  
pp. 986-1010 ◽  
Author(s):  
K.A. Patel ◽  
Sandeep Chaudhary ◽  
A.K. Nagpal

Purpose – The purpose of this paper is to develop, for use in everyday design, a procedure that incorporates the effect of concrete cracking in reinforced concrete (RC) beams at service load and requires computational efforts which is a fraction of that required for the available methods. Further for ease of use in everyday design the reinforcement input data is minimized. The procedure has been demonstrated for continuous beams and is under development for tall building frames. Design/methodology/approach – The procedure is analytical at the element level and numerical at the structural level. A cracked span length beam element consisting of three cracked zones and two uncracked zones has been used. Closed form expressions for flexibility coefficients, end displacements, crack lengths, and mid-span deflection of the cracked span length beam element have been presented. In order to keep the procedure analytical at the element level, average tension stiffening characteristics are arrived at for cracked zones. Findings – The proposed procedure, at minimal computation effort and minimal reinforcement input data, yields results that are close to experimental and finite element method results. Practical implications – The procedure can be used in everyday design since it requires minimal computational effort and minimal reinforcement input data. Originality/value – A procedure that requires minimal computational effort and minimal reinforcement input data for incorporating concrete cracking effects in RC structures at service load has been developed for use in everyday design.


Sign in / Sign up

Export Citation Format

Share Document