scholarly journals Assessment of Water Permeability Test on Polypropylene based Self-Compacted Fibre Reinforced Concrete (PSCFRC)

2021 ◽  
Vol 1197 (1) ◽  
pp. 012080
Author(s):  
A Shelorkar

Abstract An investigation conducted to study the effect of water permeability and strength characteristics such as compressive strength of Polypropylene self-compacted fibre reinforced concrete (PSCFRC) is presented. Polypropylene fibres of lengths, 35 mm with a diameter of 0.44 mm, were systematically combined in different mix proportions to combinations of 0.2%, 0.4%, and 0.6% Polypropylene fibre volume fraction. For comparison, a concrete mix with no fibres was also mixed. A total of 72 cube specimens of 150 mm were tested, 36 each for compressive strength and water permeability at 28 and 56 days of curing. According to the findings of this study, a fibre combination of SCFRC 0.6 percent is the most acceptable fibre composition to use in Polypropylene self-compacted fibre reinforced concrete (PSCFRC) for maximum performance in terms of compressive strength and water permeability requirements together.

2015 ◽  
Vol 773-774 ◽  
pp. 949-953 ◽  
Author(s):  
Izni Syahrizal Ibrahim ◽  
Wan Amizah Wan Jusoh ◽  
Abdul Rahman Mohd Sam ◽  
Nur Ain Mustapa ◽  
Sk Muiz Sk Abdul Razak

This paper discusses the experimental results on the mechanical properties of hybrid fibre reinforced composite concrete (HyFRCC) containing different proportions of steel fibre (SF) and polypropylene fibre (PPF). The mechanical properties include compressive strength, tensile strength, and flexural strength. SF is known to enhance the flexural and tensile strengths, and at the same time is able to resist the formation of macro cracking. Meanwhile, PPF contributes to the tensile strain capacity and compressive strength, and also delay the formation of micro cracks. Hooked-end deformed type SF fibre with 60 mm length and fibrillated virgin type PPF fibre with 19 mm length are used in this study. Meanwhile, the concrete strength is maintained for grade C30. The percentage proportion of SF-PPF fibres are varied in the range of 100-0%, 75-25%, 50-50%, 25-75% and 0-100% of which the total fibre volume fraction (Vf) is fixed at 0.5%. The experimental results reveal that the percentage proportion of SF-PPF fibres with 75-25% produced the maximum performance of flexural strength, tensile strength and flexural toughness. Meanwhile, the percentage proportion of SF-PPF fibres with 100-0% contributes to the improvement of the compressive strength compared to that of plain concrete.


Author(s):  
Ahsan Ali ◽  
Shahid Iqbal ◽  
Klaus Holschemacher ◽  
Thomas A. Bier

Current study encompasses comparison of flexural tests results of Normalweight Fibre-reinforced Concrete (NWFC) and Lightweight Fibre-reinforced Concrete (LWFC) beam specimens. Fibres are known for their positive effect on crack control, better post-cracking behaviour under flexure and for enhancing toughness. These improvements, however, come at the expense of degraded workability. Using lightweight aggregates of regular shape instead of heavier, irregular and rough textured normalweight aggregates can address the issue of poor workability of concrete besides other advantages that it will bring along with. Replacing normalweight aggregate with lightweight aggregate also has its demerits and in most cases under similar testing environments lightweight concrete has lower strength results. This paper covers evaluation of flexural performance for both LWFC and NWFC having similar compressive strength class. For this purpose 24 beams 150 × 150 × 700 mm in dimensions were tested under flexure. For a fair comparison, it was made sure that both the concretes (LWFC and NWFC) at every fibre volume fraction (0, 0.25, 0.5 and 0.75%) fell under the same strength class.


2019 ◽  
Vol 9 (9) ◽  
pp. 1762 ◽  
Author(s):  
Álvaro Picazo ◽  
Marcos Alberti ◽  
Jaime Gálvez ◽  
Alejandro Enfedaque ◽  
Abner Vega

The reinforcement of concrete by using polyolefin fibres may be considered in structural design to meet the requirements of the applicable code rules. To achieve a reliable use of such a composite material, use of full-scale real structures is needed. The conversion of lab testing data into real practice properties is challenging and significantly influenced by various aspects, among which the size effect is a key one. Given that the available literature does not report coinciding conclusions about such an effect on quasi-brittle materials reinforced with fibres, further research is justified. Therefore, this work studies the behaviour of notched beams with three proportional sizes by using self-compacting polyolefin reinforced concrete with a fibre volume fraction of 1.1%. Flexural testing was carried out according to the standard EN-14651, with the results revealing the existence of the size effect. In addition, a reduction of the residual strength identified in the larger specimens was observed in fracture surfaces with equal fibre content.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
M. P. Singh ◽  
S. P. Singh ◽  
A. P. Singh

Results of an investigation conducted to study the effect of fibre hybridization on the strength characteristics such as compressive strength, split tensile strength, and water permeability of steel fibre reinforced concrete (SFRC) are presented. Steel fibres of different lengths, that is, 12.5 mm, 25 mm, and 50 mm, having constant diameter of 0.6 mm, were systematically combined in different mix proportions to obtain mono, binary, and ternary combinations at each of 0.5%, 1.0%, and 1.5% fibre volume fraction. A concrete mix containing no fibres was also cast for reference purpose. A total number of 1440 cube specimens of size 100*100*100 mm were tested, 480 each for compressive strength, split tensile strength, and water permeability at 7, 28, 90, and 120 days of curing. It has been observed from the results of this investigation that a fibre combination of 33% 12.5 mm + 33% 25 mm + 33% 50 mm long fibres can be adjudged as the most appropriate combination to be employed in hybrid steel fibre reinforced concrete (HySFRC) for optimum performance in terms of compressive strength, split tensile strength and water permeability requirements taken together.


2018 ◽  
Vol 219 ◽  
pp. 03004 ◽  
Author(s):  
Aleksandra Mariak ◽  
Marzena Kurpińska

The paper presents studies of a ready-mix concrete containing polymer fibres of three different lengths: 24, 38 and 54 mm. The performed tests allowed to determine the effect of fibre volume fraction and length on the concrete strength. The basic parameters of concrete mixture (consistency, air content and bulk density) were identified. Fibre reinforced concrete belongs to a group of composite materials. The polymer fibres are applied in the concrete in structures where the reduction of shrinkage cracking as well as corrosion resistance and fire temperatures are required. It is widely known, that the cracking behaviour of concrete structures depends on flexural tensile strength of concrete. The addition of fibres significantly improves the tensile strength. The experimental study, including axial compressive strength and center-point loading flexural tensile strength, was carried out. The scope of the research was also expanded by the usage of a scanning microscope. The test results showed the effect of fibre length and fibre combinations on mechanical properties of concrete. The effect of the research is to formulate guidelines due to the quantity of macro polymer fibres. In general, appropriate fibre content brings a beneficial effect e.g. improves better workability of a concrete mixture.


Author(s):  
Ramaiah Prakash ◽  
Rajagopal Thenmozhi ◽  
Sudharshan N. Raman ◽  
Chidambaram Subramanian

The aim of this study is to investigate the effect of polypropylene fibre addition into eco-concrete made with fly ash, an industrial by product, as partial cement replacement material, and coconut shell, an agricultural waste,  as coarse aggregates, on the mechanical properties of the concrete. Two different mixes were developed, one with coconut shell only as coarse aggregates, and the other with the combination of both conventional aggregates and coconut shell as coarse aggregates. The cement content was replaced with class F fly ash at 10% by weight in the concrete mixes. The volume fractions of polypropylene fibres used in this study were 0.25%, 0.5%, 0.75% and 1.0%. The addition of polypropylene fibres slightly reduces the slump and density of coconut shell concrete. As the volume fraction of fibres increases, the compressive strength and modulus of elasticity of coconut shell concrete also increases by up to 0.5% of fibre volume fraction. The split tensile strength and flexural strength of coconut shell concrete were also enhanced with fibre addition. The addition of 0.75% and 1.0% volume fractions of polypropylene fibres slightly reduces compressive strength. Results of this study show that polypropylene fibres may be used in coconut shell concrete to improve the mechanical properties of the composite.


1990 ◽  
Vol 211 ◽  
Author(s):  
Miguel A. Sanjuan ◽  
A. Moragues ◽  
B. Bacle ◽  
C. Andrade

AbstractThe permeability of concrete to gases is of direct importance to the durability of concrete structures, because of carbon dioxide flowing through the concrete favour lime carbonation and reinforcing steel corrosion.Mortar with and without polypropylene fibres having water/cementitious ratios of 0.30, 0.35 and 0.40 and a cement/sand ratio of 1/1 were studied. Polypropylene dosage varied from 0.1 to 0.3% by volume of cement.The characterization of mortar permeability was made using cylindrical shaped samples (3 cm height and 15 cm diameter). These specimens were 28 days cured and then dried before the test.The addition of fibres results in a decrease of air permeability. Variation of the water/cement ratio is of lesser importance than fiber addition.


Author(s):  
Eswari Natarajan

Abstract: The effect of fibre content on the Strength and ductility behaviour of hybrid fibre reinforced concrete (HFRC) beams having different fibre volume fractions was investigated. The parameters of this investigation included service load, ultimate load, service load deflection, ultimate load deflection, crack width, deflection ductility and energy ductility. The fibre volume fraction (Vf) ranged from 0.0 to 2.0 percent. Steel and polyolefin fibres were combined in different proportions and their impact on the above parameters was studied. The ductile response of hybrid fibre reinforced concrete beams was compared with that of control beam. The test results show that addition of 2.0 percent by volume of hybrid fibres improve the strength and ductility appreciably. Empirical expressions for predicting the strength and ductility of hybrid fibre reinforced concrete (HFRC) are proposed based on regression analysis. A close agreement has been obtained between the predicted and experimental results.


Sign in / Sign up

Export Citation Format

Share Document