scholarly journals The method of obtaining polymer masterbatches based on polylactide with carbon filler

2021 ◽  
Vol 1199 (1) ◽  
pp. 012058
Author(s):  
D Kaczor ◽  
K Bajer ◽  
G Domek ◽  
A Raszkowska-Kaczor ◽  
P Szroeder

Abstract The method of obtaining polymer composites with a graphite filler using a kneading mixer was presented. The best mixing parameters (rotational speed and temperature) were determined, allowing to obtain composites with the best filler dispersion in the polymer matrix. A series of graphite/polylactide (PLA) masterbatches were made. The following composites tests were performed: scanning electron microscopy (SEM), infrared spectroscopy (FTIR-ATR), and differential scanning calorimetry (DSC). The value of the mass melt flow rate (MFR) was also determined. It was observed that the best homogenization were obtained for samples mixed at a speed of 40-50 rpm and at a temperature of 180-190°C.

Author(s):  
Samir A Atara ◽  
Moinuddin M Soniwala

Objective: Calcium pectinate is an insoluble hydrophilic material used for sustained release delivery. The objective of the study was formulation and evaluation pectin-calcium chloride beads of azathioprine.Methods: Calibration curves of azathioprine were prepared in 0.1N HCl solution (pH-1.2) and phosphate buffer (pH-6.8 and pH-7.4). Fourier transform infrared spectroscopy and differential scanning calorimetry was used to determine compatibility between azathioprine and excipients. Formulation and optimization of calcium-pectinate beads were performed. The coating of the optimized batch was performed with eudragit S100. Micrometric properties, scanning electron microscopy, in vitro azathioprine release, and stability study was performed. Dissolution kinetic study was assessed for various kinetics models of the optimized batch. The Wilcoxon test followed by the Dunnett’s multiple comparison tests were performed between uncoated and coated beads in vitro dissolution profile of optimized batch in 0.1N HCl after 2 h.Results: Fourier transform infrared spectroscopy and differential scanning calorimetry had identical peaks with that of pure azathioprine in compatibility study. Scanning electron microscopy of an uncoated optimized batch of beads indicated the smooth and uniform surface of prepared beads. Eudragit S100 coating was decreased release of azathioprine release in 0.1N HCl after 2 h (p = 0.049, q = 3.533). Korsmeyer/Peppa's model was applied with release exponent higher than 1. In vitro percentage cumulative azathioprine release was identical before and after stability study.Conclusion: Calcium pectinate beads of azathioprine, a multi-particulate dosage form using pH-dependent approaches were prepared.


2021 ◽  
pp. 095400832110055
Author(s):  
Yang Wang ◽  
Yuhui Zhang ◽  
Yuhan Xu ◽  
Xiucai Liu ◽  
Weihong Guo

The super-tough bio-based nylon was prepared by melt extrusion. In order to improve the compatibility between bio-based nylon and elastomer, the elastomer POE was grafted with maleic anhydride. Scanning Electron Microscopy (SEM) and Thermogravimetric Analysis (TGA) were used to study the compatibility and micro-distribution between super-tough bio-based nylon and toughened elastomers. The results of mechanical strength experiments show that the 20% content of POE-g-MAH has the best toughening effect. After toughening, the toughness of the super-tough nylon was significantly improved. The notched impact strength was 88 kJ/m2 increasing by 1700%, which was in line with the industrial super-tough nylon. X-ray Diffraction (XRD) and Differential Scanning Calorimetry (DSC) were used to study the crystallization behavior of bio-based PA56, and the effect of bio-based PA56 with high crystallinity on mechanical properties was analyzed from the microstructure.


e-Polymers ◽  
2002 ◽  
Vol 2 (1) ◽  
Author(s):  
Andrea Pucci ◽  
Letizia Moretto ◽  
Giacomo Ruggeri ◽  
Francesco Ciardelli

AbstractA new polyethylene-compatible terthiophene chromophore, 5”-thio-(3- butyl)nonyl-2,2’:5’,2”-terthiophene, with melting point lower than 0°C was prepared and used for linear polarizers based on ultra-high-molecular-weight polyethylene (UHMWPE). Differential scanning calorimetry and scanning electron microscopy indicate that the new chromophore is dispersed uniformly in films of UHMWPE obtained by casting from solution. The films show excellent dichroic properties (dichroic ratio 30) at rather low drawing ratio (≈ 20) . Moreover, qualitative agreement is observed with the Ward pseudo-affine deformation scheme.


2019 ◽  
Vol 953 ◽  
pp. 209-214
Author(s):  
Yi Teng Zhang ◽  
Lian Zuo ◽  
Jin Chao Yang ◽  
Wei Xia Zhao ◽  
Xiang Xiong Zeng

The main objective of this study is to investigate the effect of cementitious capillary crystalline waterproofing (CCCW) material on the water impermeability and microstructure of concrete. The water impermeability of concrete covered with or without CCCW material was tested according to the Chinese standard GB 18445-2012. The results indicate that concretes coated with CCCW material showed much higher water impermeability than blank ones, and the ratio of water impermeability pressure between them reached 275. The samples obtained in various depths of hardened cement paste specimens with or without CCCW coating were analyzed through scanning electron microscopy (SEM) and thermogravimetry-differential scanning calorimetry (TG-DSC), to study the differences in microstructure and hydration products. The results present that after a 28-day standard curing, there were lots of ettringite crystals and CaCO3 formed in the paste in 1 cm from the coating, but the action depth of the CCCW coating could not reach 3 cm. The ettringite and CaCO3 is precipitated in the pore structure of cement matrix and filling the voids, which leads to the significant enhancement in water impermeability.


2017 ◽  
Vol 67 (5) ◽  
pp. 510 ◽  
Author(s):  
Han Gao ◽  
Wei Jiang ◽  
Jie Liu ◽  
Gazi Hao ◽  
Lei Xiao ◽  
...  

<p>An energetic co-crystal consisting of the most promising military explosive 2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and the most well-known oxidant applied in propellants ammonium perchlorate has been prepared with a simple solvent evaporation method. Scanning electron microscopy revealed that the morphology of co-crystal differs greatly from each component. The X-ray diffraction spectrum, FTIR, Raman spectra, and differential scanning calorimetry characterisation further prove the formation of the co-crystal. The result of determination of hygroscopic rate indicated the hygroscopicity was effectively reduced. At last, the crystallisation mechanism has been discussed.</p>


2003 ◽  
Vol 801 ◽  
Author(s):  
A. Bassetti ◽  
E. Bonetti ◽  
A. L. Fiorini ◽  
J. Grbovic ◽  
A. Montone ◽  
...  

ABSTRACTMagnesium carbon nanocomposites for hydrogen storage have been synthesized by ball milling with different amount of benzene, acting as a lubricant. Their microstructure has been studied by X-ray diffraction and scanning electron microscopy, while the hydrogen desorption temperature has been tested by differential scanning calorimetry. Experimental results show that the microstructure after milling, the hydrogenation capabilities of the material and the reactivity with the air are related to the amount of additives. In particular the carbon to benzene ratio seems to play a major role. In fact, with an optimum value of carbon to benzene weight ratio of 1/6, the amount of carbon being 15 wt% of the milled mixture, a decomposition heat equal to 57% of pure MgH2 was measured, even after air manipulation of the sample.


2010 ◽  
Vol 12 (3) ◽  
pp. 10-14 ◽  
Author(s):  
Agata Domańska ◽  
Anna Boczkowska ◽  
Marta Izydorzak ◽  
Zbigniew Jaegermann ◽  
Krzysztof Kurzydłowski

Polyurethanes used in the endoprosthesis of joints The aim of the studies presented in this paper was the selection of the polyurethanes synthesized from different substrates in order to obtain i) ceramic - biodegradable polymer composite and ii) polyurethane resistant to abrasive wear. The polyurethanes were obtained from the crystalline prepolymers extended by water, because it may have a beneficial effect on the toxicity of the material. The properties of PUs were investigated using infrared spectroscopy, thermogravimetry, differential scanning calorimetry and scanning electron microscopy. In all the tested polyurethanes the peak from the reactive -NCO groups was not observed, which indicates that all the substrates are fully reacted. Such polyurethanes are characterized by interesting properties with the perspective use as components of ceramic-polymer joints endoprosthesis. The designed endoprosthesis should fulfill at least three functions: load bearing function (ceramic core), fastening and stabilizing endoprosthesis to the bone (composite ceramics - biodegradable polymer) and tribologic function allowing mating with parts of the prosthesis (polyurethane layer resistant to abrasive wear).


2012 ◽  
Vol 204-208 ◽  
pp. 3998-4001
Author(s):  
Qi Song Shi

The ultrafine fibers based on the composites of polyethylene glycol(PEG) and polyvinylpyrrolidone(PVP) were prepared successfully via electrospinning as phase change materials. The thermal properties and morphology of the composite fibers were studied by differential scanning calorimetry(DSC) and scanning electron microscopy(SEM), respectively.


Sign in / Sign up

Export Citation Format

Share Document