scholarly journals Numerical Modelling Observations of Settlement for Pad Footings Supported on Soft Clay Soil

2021 ◽  
Vol 1200 (1) ◽  
pp. 012032
Author(s):  
O A Arab ◽  
A J M S Lim ◽  
S Y Sim ◽  
N A A Guntor

Abstract Settlement calculation is an important part in the design of shallow foundations resting on soft soils. The size of the foundation, the depth of the footings, and the rise in ground water level are thought to influence settlement and have been the subject of much research for many years. Thus, this study compared several pad footing sizes using numerical techniques as the basis. The first objective of this study was to analyse soil and pad footing settlement, and to determine the optimal size of footing that withstands excessive settlement due to variation in the water table and the depth of the foundation. Three footing embedment depths of 1.5, 2, and 3m with three water table positions, at the GL (0m), 1.5, and 3m with an applied foundation concentrated load of 440 kN using five footing models of 1.5mx1.5m, 2mx1.5m, 2 m x 2 m, 2.5x1.5m, and 2.5x1.5m pad footing with a uniform thickness of 0.5m were considered. In this study, a 3D Plaxis simulation is used for predicting the settlement of shallow foundations on soft clay soils. Settlement results were discovered at various water table positions and foundation depths. The study found that the 2.5x2m footing was deemed the best among the simulated foundations, and the 3m foundation embedment was considered the best at shallow depths due to less excessive settlement than the other tested foundations. The settlement had a significant impact on the size of the foundation and the depth of the footing. The depth of the water table has a small impact on the settlement. Parametric analysis is also being used to gain a better understanding of the behaviour of the elastic settlement of various shallow foundations. It is found that the footing area increases, settlement decreases and vice versa.

2019 ◽  
Vol 9 (1) ◽  
pp. 481-489
Author(s):  
D.C. Lat ◽  
I.B.M. Jais ◽  
N. Ali ◽  
B. Baharom ◽  
N.Z. Mohd Yunus ◽  
...  

AbstractPolyurethane (PU) foam is a lightweight material that can be used efficiently as a ground improvement method in solving excessive and differential settlement of soil foundation mainly for infrastructures such as road, highway and parking spaces. The ground improvement method is done by excavation and removal of soft soil at shallow depth and replacement with lightweight PU foam slab. This study is done to simulate the model of marine clay soil integrated with polyurethane foam using finite element method (FEM) PLAXIS 2D for prediction of settlement behavior and uplift effect due to polyurethane foam mitigation method. Model of soft clay foundation stabilized with PU foam slab with variation in thickness and overburden loads were analyzed. Results from FEM exhibited the same trend as the results of the analytical method whereby PU foam has successfully reduced the amount of settlement significantly. With the increase in PU foam thickness, the settlement is reduced, nonetheless the uplift pressure starts to increase beyond the line of effective thickness. PU foam design chart has been produced for practical application in order to adopt the effective thickness of PU foam within tolerable settlement value and uplift pressure with respect to different overburden loads for ground improvement works.


Author(s):  
Elham Bayatmanesh

The Several numerical techniques have been developed and compared for solving the one-dimensional and three-dimentional advection-diffusion equation with constant coefficients. the subject has played very important roles to fluid dynamics as well as many other field of science and engineering. In this article, we will be presenting the of n-dimentional and we neglect the numerical examples.


2020 ◽  
Vol 11 (2) ◽  
pp. 40-48
Author(s):  
Y. A Pronosin ◽  
M. D Kaygorodov ◽  
A. M Karaulov

Existing approaches which allow to reduce the settlement unevenness of buildings and structures have their own advantages and disadvantages. One of the promising methods for reducing shallow foundations the settlement unevenness, which are based on soft dust and clay soil, is the building or its part lowering. The effect is achieved by drilling vertical wellbores in the immediate proximity to the existing foundation from the side of the least settlement. At different times, domestic and foreign scientists were engaged in to the methods of horizontal and inclined drilling of wellbores, an important issue, when applying this technology, is the determination of drilling parameters, the influence of soil characteristics and the stress state of the soil around the well, on the roll reduction process. The article considers the influence of the soil strength characteristics on the stress state of the soil which are surrounding the wellbore, and the effect of the drilled wellbore radius on the formation of the critical state regions. The analytical solution is based on the use of the well-known relationship for determining the stress state around the well during pressiometric tests. From this ratio, tangential and radial stresses are determined, which are then checked according to the condition of the law of strength, thereby forming a picture of the stress state around the well. According to the presented methodology, the stress state of the soil around the wells was calculated, which allows calculating the zones of soil destruction and thereby determining the parameters of the wells and the geometry of their location depending on the goals, when regulating the sediment of slab foundations.


2012 ◽  
Vol 15 (1) ◽  
pp. 211-222
Author(s):  
G Attia ◽  
E Elshamy ◽  
H Fawzy ◽  
K Abdul - hafez
Keyword(s):  

2019 ◽  
Vol 5 (4) ◽  
pp. 922-939 ◽  
Author(s):  
Anis Abdul Khuder Mohamad Ali ◽  
Jaffar Ahemd Kadim ◽  
Ali Hashim Mohamad

The objective of this article is to generating the design charts deals with the axially ultimate capacity of single pile action by relating the soil and pile engineering properties with the pile capacity components. The soil and are connected together by the interface finite element along pile side an on its remote end.  The analysis was carried out using ABAQUS software to find the nonlinear solution of the problem. Both pile and soil were modeled with three-dimensional brick elements. The software program is verified against field load-test measurements to verify its efficiency accuracy. The concrete bored piles are used with different lengths and pile diameter is taken equals to 0.6 m. The piles were installed into a single layer of sand soil with angles of internal friction (20° t0 40°) and into a single layer of clay soil with Cohesion (24 to 96) kPa.  The getting results showed that for all cases study the total compression resistance is increased as pile length increased for the same property of soil, also illustrious that the total resistance of same pile length and diameter increased as the soil strength increasing. In addition, the same results were obtained for the end bearing resistance, skin resistance and tension capacity. Design charts were constructed between different types of soil resistance ratio and the pile length/diameter ratio (L/D) for all cases of study. One of improvement found from these curves that it is cheaply using piles of larger diameter than increasing their lengths for dense sand and to increasing piles lengths for loose sand. Moreover, it is inexpensively using piles of larger length in soft clay soil than increasing their diameter and piles of larger diameter in firm and stiff clay soils than increasing their length.


2018 ◽  
Vol 783 ◽  
pp. 46-50
Author(s):  
Yu Cong Gao ◽  
Rong Chen ◽  
Dong Xue Hao ◽  
Myoung Soo Won

Geosynthetics–reinforced structures are widely used in embankments and walls. This paper presents the simulation of the embankment under load in order to compare the behavior of clay embankment with and without wrapping-facing-geosynthetics-reinforcement using finite element method (FEM) and to analyse the variation of behavior included of displacement and excess pore pressure under the different over-consolidation ratios (OCR). The calculation results show that embankment with higher OCR showing lower displacement compare to embankment with lower OCR. However, OCR isn’t very sensitive to the dissipation of excess pore pressure. Geosynthetics-reinforcements could reduce the displacement of embankment and accelerate dissipation of excess pore pressure after construction and surcharge. Gravel, geosynthetics-reinforcement and clay soil are properly combined, clayey soil is expected to be useful as embankment material.


Sign in / Sign up

Export Citation Format

Share Document