scholarly journals Selection of the battery pack parameters for an electric vehicle based on performance requirements

Author(s):  
M Koniak ◽  
A Czerepicki
2019 ◽  
Vol 16 (8) ◽  
pp. 3351-3358
Author(s):  
Jyothi P. Phatak ◽  
L. Venkatesha ◽  
C. S. Raviprasad

The selection of motor is one of the significant factors in Electric Vehicle design. When the motor is selected based on the conventional method, its performance during starting of the EV is met but it may fail in other operating regions of the driving cycle. This is because, acceleration requirements assume zero initial speed conditions and the requirements with different initial speeds is not accounted in the conventional method. This paper discusses an alternative procedure to compute the ratings of induction motor. The preliminary method to compute the ratings is carried out based on vehicle performance requirements. The improvisation techniques in the computation are then adopted to get required acceleration and transient torque capabilities of motor to meet the driving cycle requirements. The procedure is illustrated through simulation studies using MAT lab software.


2021 ◽  
Vol 12 (1) ◽  
pp. 26
Author(s):  
Liyan Guo ◽  
Huimin Wang

A surface-mounted permanent magnet (SPM) machine is widely used in many auxiliary parts of an electric vehicle, so its design level directly influences the performance of the electric vehicle. In the design process of the SPM machine, selecting the appropriate stator slot and rotor pole combination and pole arc coefficient is a necessary and important step. Therefore, in this paper, a 750 W machine is set as an example to research stator slot and rotor pole combinations and pole arc coefficients for the SPM machine. First, the design schemes of machines adopting different stator slot and rotor pole combinations are determined according to the winding coefficient, stator size, and electromagnetic performance requirements. Further, finite element models of SPM machines with different stator slot and rotor pole combinations are established by Ansys Maxwell. On this basis, the back electromotive force (back EMF), cogging torque, electromagnetic torque, and loss and efficiency of SPM machines are calculated and compared to select the better stator slot and rotor pole combinations. Further, effects of pole arc coefficient on cogging torque and electromagnetic torque are also researched to guide the selection of the pole arc coefficient in the design process of the SPM machine. Conclusions achieved in this paper will provide guidance for design of the SPM machine.


Author(s):  
Daniele Landi ◽  
Paolo Cicconi ◽  
Michele Germani

An important issue in the mechanical industry is the reduction of the time to market, in order to meet quickly the customer needs. This goal is very important for SMEs that produce small lots of customized products. In the context of greenhouse gas emissions reduction, vehicles powered by electric motors seem to be the most suitable alternative to the traditional internal combustion engine vehicles. The market of customized electric vehicles is a niche market suitable for SMEs. Nowadays, the energy storage system of an electric vehicle powertrain consists of several Li-ion cells arranged in a container called battery pack. Particularly, the battery unit is considered as the most critical component in electric vehicle, because it impacts on performance and life cycle cost. Currently, the design of a battery pack mostly depends on the related market size. A longer design time is expected in the case of a large scale production. While a small customized production requires more agility and velocity in the design process. The proposed research focuses on a design methodology to support the designer in the evaluation of the battery thermal behavior. This work has been applied in the context of a customized small production. As test case, an urban electric light commercial vehicle has been analyzed. The designed battery layout has been evaluated and simulated using virtual prototyping tools. A cooling configuration has been analyzed and then prototyped in a physical vehicle. The virtual thermal behavior of a Li-ion battery has been validated at the test bench. The real operational conditions have been analyzed reproducing several ECE-15 driving cycles and many acceleration runs at different load values. Thermocouples have measured the temperature values during the physical experiments, in order to validate the analytical thermal profile evaluated with the proposed design approach.


Author(s):  
Murli Jha

Abstract: The initial dimensions and weight for the vehicle is considered from the Audi A8 vehicle as a reference. The specifications for the motor and battery are considered for the Mahindra e2o electric vehicle of similar dimensions. The main objective of this paper is to model and perform static analysis on the chassis of a four-seater car. The initial design for the chassis was a space frame body which is very rigid and had very less deflection. The second and final chassis is a ladder type chassis which is most common chassis type being used in Nepal and India. The difference in deflection between both the chassis type is very less, which is about 0.3235 mm for a reasonable reduction in weight which is about 120 Kg. The simulation part is carried out in ANSYS software. The result is selection of best suitable material for chassis on the basis of ANSYS and theoretically calculated result. Keywords: Chassis, Structural Analysis, Optimization, Four seater car


Sign in / Sign up

Export Citation Format

Share Document