scholarly journals Transport and Retention Modelling of Iron Oxide Nanoparticles in Core Scale Porous Media for Electromagnetic Heating Well-Stimulation Optimization

Author(s):  
R K Santoso ◽  
S Rachmat ◽  
W D K Putra ◽  
A H Resha ◽  
H Hartowo
2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
M. Golzar ◽  
S. F. Saghravani ◽  
M. Azhdari Moghaddam

Recently, iron nanoparticles have attracted more attention for groundwater remediation due to its potential to reduce subsurface contaminants such as PCBs, chlorinated solvents, and heavy metals. The magnetic properties of iron nanoparticles cause to attach to each other and form bigger colloid particles of iron nanoparticles with more rapid sedimentation rate in aqueous environment. Using the surfactants such as poly acrylic acid (PAA) prevents iron nanoparticles from forming large flocs that may cause sedimentation and so increases transport distance of the nanoparticles. In this study, the transport of iron oxide nanoparticles (Fe3O4) stabilized with PAA in a one-dimensional porous media (column) was investigated. The slurries with concentrations of 20,100 and 500 (mg/L) were injected into the bottom of the column under hydraulic gradients of 0.125, 0.375, and 0.625. The results obtained from experiments were compared with the results obtained from numerical solution of advection-dispersion equation based on the classical colloid filtration theory (CFT). The experimental and simulated breakthrough curves showed that CFT is able to predict the transport and fate of iron oxide nanoparticles stabilized with PAA (up to concentration 500 ppm) in a porous media.


2021 ◽  
Vol 14 ◽  
pp. 1-9
Author(s):  
Nur Suraya Ahmad ◽  
Shahidan Radiman ◽  
Wan Zuhairi Wan Yaacob

Iron oxide nanoparticles are utilised in a broad range of applications (magnetic data storage, biosensing, drug delivery, treatment and remediation of contaminated soil and groundwater); causing noticeable quantities of iron oxide nanoparticles to be released into the environment. In this study, aggregation and stability of iron oxide nanoparticles in water were investigated within the range of pH 3 – pH 9 at a constant concentration of iron oxide nanoparticles and humic acid. The pH of the solution was selected to be continuously monitored at pH 7 to investigate the transportation and deposition behaviour of iron oxide nanoparticles in porous media at different velocities. It was found that iron oxide nanoparticles were aggregated and settle down as settled particles at low pH (pH 3 – pH 5). Iron oxide nanoparticles were stable, mobile and transported at a high pH, which is the pH range of natural water (pH 6.5 – pH 8.5). Iron oxide nanoparticles were strongly attached to the silica sand at natural water velocity in porous media, which is 2.93 ml min-1. Overall, the presence of humic acid in aquifers and porous media, the pH range of natural water (pH 6.5 – pH 8.5) and the slow speed (2.93 ml min-1) of water are expected to be a key factor that enhances the stability and mobility of iron oxide nanoparticles in natural water and porous media.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


2020 ◽  
Vol 2020 (3) ◽  
pp. 54-61
Author(s):  
S.E. Litvin ◽  
◽  
Yu.A. Kurapov ◽  
E.M. Vazhnichaya ◽  
Ya.A. Stel’makh ◽  
...  

2015 ◽  
Vol 22 (15) ◽  
pp. 1808-1828 ◽  
Author(s):  
Diana Couto ◽  
Marisa Freitas ◽  
Felix Carvalho ◽  
Eduarda Fernandes

Sign in / Sign up

Export Citation Format

Share Document