scholarly journals Wheel slip dump valve for railway braking system

Author(s):  
Xuan Zhang ◽  
LiHao Zhang ◽  
QingXuan Li ◽  
YanTao Shi
Keyword(s):  
2018 ◽  
Vol 1 (2) ◽  
Author(s):  
Sam Ali Nurdin ◽  
Ketut Bayu Yogha Bntoro

The public transportation model which is currently widely used by people who live in Jakarta, Bogor, Depok, Tangerang and Bekasi (JABODETABEK) is the Commuter-Line Electric Train (KRL). According to online media sources(http://Kompas.com 2 December 2015), currently, the JABODETABEK Commuter-Line KRL can carry 900,000 passengers every day. Anti Lock Braking System (ABS) is a braking system that maintains the position of the wheels and the road to prevent tire/wheel slip. Anti Lock Braking System was first used or applied to aircraft. Vehicles that are not equipped with the Anti-lock Braking System must be updated. The driver makes optimal braking to prevent slip between the wheels and the road or rail so that the vehicle stops perfectly. In this paper, we will use fuzzy inference logic to support an Anti-lock Braking System (ABS). Fuzzy inference is a logical method because when determining variables in the fuzzy method, the variable must have an International Standard (SI).


Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2501 ◽  
Author(s):  
Jinhong Sun ◽  
Xiangdang Xue ◽  
Ka Wai Eric Cheng

With the development of in-wheel technology (IWT), the design of the electric vehicles (EV) is getting much improved. The anti-lock braking system (ABS), which is a safety benchmark for automotive braking, is particularly important. Installing the braking motor at each fixed position of the wheel improves the intelligent control of each wheel. The nonlinear ABS with robustness performance is highly needed during the vehicle’s braking. The anti-lock braking controller (CAB) designed in this paper considered the well-known adhesion force, the resistance force from air and the wheel rolling friction force, which bring the vehicle model closer to the real situation. A sliding mode wheel slip ratio controller (SMWSC) is proposed to yield anti-lock control of wheels with an adaptive sliding surface. The vehicle dynamics model is established and simulated with consideration of different initial braking velocities, different vehicle masses and different road conditions. By comparing the braking effects with various CAB parameters, including stop distance, braking torque and wheel slip ratio, the SMWSC proposed in this paper has superior fast convergence and stability characteristics. Moreover, this SMWSC also has an added road-detection module, which makes the proposed braking controller more intelligent. In addition, the important brain of this proposed ABS controller is the control algorithm, which can be used in all vehicles’ ABS controller design.


Author(s):  
Graeme Morrison ◽  
David Cebon

A pneumatic slip control braking system was demonstrated, which reduces the emergency stopping distances of heavy goods vehicles by up to 19%. Solutions are still required to set the optimal reference wheel slip for this system online, so that it can adapt to changing operating conditions. This paper considers whether the use of extremum-seeking algorithms is a feasible alternative approach to online tyre model fitting, the computational expense of which has, to date, inhibited real-time implementation. The convergence and the stability properties of a first-order sliding-mode extremum-seeking algorithm are discussed, and its tuneable parameters are recast as physically meaningful performance metrics. Computer simulations are conducted using a detailed braking system model, and hardware-in-the-loop simulations are conducted with prototype pneumatic slip control braking hardware for heavy goods vehicles. The extremum-seeking algorithm enables the braking system to achieve at least 95% of the maximum possible braking force for almost the entirety of an emergency stop. The robustness to parameter errors, the road roughness and the changing friction conditions are all explored.


2020 ◽  
Vol 10 (5) ◽  
pp. 6368-6373
Author(s):  
S. Latreche ◽  
S. Benaggoune

Anti-lock Braking System (ABS) is used in automobiles to prevent slipping and locking of wheels after the brakes are applied. Its control is a rather complicated problem due to its strongly nonlinear and uncertain characteristics. The aim of this paper is to investigate the wheel slip control of the ground vehicle, comprising two new strategies. The first strategy is the Sliding Mode Controller (SMC) and the second one is the Fuzzy Sliding Mode Controller (FSMC), which is a combination of fuzzy logic and sliding mode, to ensure the stability of the closed-loop system and remove the chattering phenomenon introduced by classical sliding mode control. The obtained simulation results reveal the efficiency of the proposed technique for various initial road conditions.


2019 ◽  
Vol 20 (7) ◽  
pp. 412-416 ◽  
Author(s):  
A. A. Kolesnikov ◽  
A. A. Kuz’menko

The usage of "motor-wheel" systems requires the electric vehicle control system improvement by using the characteristics of the wheel adhesion to the road surface. One of the aspects of such improvement is the enhancement of the algorithms for the functioning of the antilock braking system (ABS). In developing the ABS control algorithms, various approaches and methods of modern control theory are used, including methods based on the estimation of wheel slip, traction force, wheel friction coefficient using linear and nonlinear estimation methods, linear and nonlinear regulators. This work illustrates the application of the principle of high order integral adaptation (PIA) of Synergetic Control Theory (SCT) for constructing a robust control law for an electric vehicle wheel slip. The main features of the SCT contain: firstly, a fundamental change in the goals of the behavior of the synthesized systems; secondly, direct consideration of the natural properties of nonlinear objects; thirdly, the formation of an analytical mechanism for generating feedbacks, i.e. control laws. PIA consists in introducing nonlinear integrators into the control law that compensate for disturbances without their immediate estimation. The obtained in this work control law has a fairly simple structure, is focused on using physically accessible state variables of the braking system, and its implementation does not require immediate estimation of disturbances or building a complex neural network to calculate disturbances. The results of computer simulations of the synthesized robust control law for ABS indicate its effectiveness in functioning under conditions of external environment uncertainty.


Author(s):  
Yesim Oniz ◽  
Erdal Kayacan ◽  
Okyay Kaynak

The main control objective of an Antilock Braking System (ABS) is to increase the tractive forces between wheel and road surface by keeping the wheel slip at the peak value of μ – λ curve. Conventionally, it is assumed that optimal wheel slip is constant. In this paper, a grey sliding mode controller is proposed to regulate optimal wheel slip depending on the vehicle forward velocity. ABS exhibits strongly nonlinear and uncertain characteristics. To overcome these difficulties, robust control methods should be employed. The concept of grey system theory, which has a certain prediction capability, offers an alternative approach to conventional control methods. The proposed controller anticipates the upcoming values of wheel slip and optimal wheel slip, and takes the necessary action to keep wheel slip at the desired value. The control algorithm is applied to a quarter vehicle model, and it is verified through simulations indicating fast convergence and good performance of the designed controller.


Author(s):  
Jeonghoon Song ◽  
Heungseob Kim ◽  
Kwangsuck Boo

This paper presents a mathematical vehicle model that is designed to analyse and improve the dynamic performance of a vehicle. A wheel slip controller for anti-lock braking system (ABS) brakes is formulated using a sliding mode controller and a proportional-integral-derivative (PID) controller for rear wheel steering is also designed to enhance the stability, steerability, and driveability of the vehicle during transient manoeuvres. The braking and steering performances of controllers are evaluated for various driving conditions, such as straight and J-turn manoeuvres. The simulation results show that the proposed full car model is sufficient to predict vehicle responses accurately. The developed ABS reduces the stopping distance and increases the longitudinal and lateral stability of both two-and four-wheel steering vehicles. The results also demonstrate that the use of a rear wheel controller as a yaw motion controller can increase its lateral stability and reduce the slip angle at high speeds.


Author(s):  
Devesh Sahu ◽  
Rishi Sharma ◽  
Devesh Bharti ◽  
Utkarsh Narain Srivastava

Safer, controlled and efficient braking is the primary objective of Anti-lock Braking System wherein an efficient and robust braking system significantly enhances the vehicle performance during both straight line motion and cornering thus resulting in drastic reduction of stopping time and distance especially for a race car in long run. Hence clocking better lap times and a considerable reduction in wear of tires are an obvious outcome apart from the enhanced vehicle stability. This work on Anti-lock Braking System (ABS) prediction and control algorithm deals with technical paradigm for estimation of vehicle velocity using wheel angular velocity from wheel rpm sensors as the sole input and methodology to control the braking torque on each wheel so as to prevent loss of traction. The proposed algorithm is modeled using advanced simulating tools involving theoretical estimation of braking torque on each wheel. This is supposed to reduce tire skid with controlled wheel slip estimated using the tire data and the car vehicle dynamics with formula student vehicle as the subject. The work and hence the control algorithm can potentially be extended into a better traction control strategy with acceleration and yaw inputs from accelerometers and yaw sensors.


2020 ◽  
Vol 1706 ◽  
pp. 012216
Author(s):  
V Dankan Gowda ◽  
M Ramesha ◽  
S B Sridhara ◽  
G Naveena Pai ◽  
Sachin Kumar Patil

Sign in / Sign up

Export Citation Format

Share Document