scholarly journals Long-term trends in climate and hydrology in Jinghe River Basin

Author(s):  
L H Meng ◽  
M F Zhang
Water ◽  
2019 ◽  
Vol 11 (7) ◽  
pp. 1498 ◽  
Author(s):  
Solomon Mulugeta ◽  
Clifford Fedler ◽  
Mekonen Ayana

With climate change prevailing around the world, understanding the changes in long-term annual and seasonal rainfall at local scales is very important in planning for required adaptation measures. This is especially true for areas such as the Awash River basin where there is very high dependence on rain- fed agriculture characterized by frequent droughts and subsequent famines. The aim of the study is to analyze long-term trends of annual and seasonal rainfall in the Awash River Basin, Ethiopia. Monthly rainfall data extracted from Climatic Research Unit (CRU 4.01) dataset for 54 grid points representing the entire basin were aggregated to find the respective areal annual and seasonal rainfall time series for the entire basin and its seven sub-basins. The Mann-Kendall (MK) test and Sen Slope estimator were applied to the time series for detecting the trends and for estimating the rate of change, respectively. The Statistical software package R version 3.5.2 was used for data extraction, data analyses, and plotting. Geographic information system (GIS) package was also used for grid making, site selection, and mapping. The results showed that no significant trend (at α = 0.05) was identified in annual rainfall in all sub-basins and over the entire basin in the period (1902 to 2016). However, the results for seasonal rainfall are mixed across the study areas. The summer rainfall (June through September) showed significant decreasing trend (at α ≤ 0.1) over five of the seven sub-basins at a rate varying from 4 to 7.4 mm per decade but it showed no trend over the two sub-basins. The autumn rainfall (October through January) showed no significant trends over four of the seven sub-basins but showed increasing trends over three sub-basins at a rate varying from 2 to 5 mm per decade. The winter rainfall (February through May) showed no significant trends over four sub-basins but showed significant increasing trends (at α ≤ 0.1) over three sub-basins at a rate varying from 0.6 to 2.7 mm per decade. At the basin level, the summer rainfall showed a significant decreasing trend (at α = 0.05) while the autumn and winter rainfall showed no significant trends. In addition, shift in some amount of summer rainfall to winter and autumn season was noticed. It is evident that climate change has shown pronounced effects on the trends and patterns of seasonal rainfall. Thus, the study contribute to better understanding of climate change in the basin and the information from the study can be used in planning for adaptation measures against a changing climate.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1605
Author(s):  
Chaoxing Sun ◽  
Xiong Zhou

The assessment of future climate changes on drought and water scarcity is extremely important for water resources management. A modeling system is developed to study the potential status of hydrological drought and water scarcity in the future, and this modeling system is applied to the Jinghe River Basin (JRB) of China. Driven by high-resolution climate projections from the Regional Climate Modeling System (RegCM), the Variable Infiltration Capacity model is employed to produce future streamflow projections (2020–2099) under two Representative Concentration Pathway (RCP) scenarios. The copula-based method is applied to identify the correlation between drought variables (i.e., duration and severity), and to further quantify their joint risks. Based on a variety of hypothetical water use scenarios in the future, the water scarcity conditions including extreme cases are estimated through the Water Exploitation Index Plus (WEI+) indicator. The results indicate that the joint risks of drought variables at different return periods would decrease. In detail, the severity of future drought events would become less serious under different RCP scenarios when compared with that in the historical period. However, considering the increase in water consumption in the future, the water scarcity in JRB may not be alleviated in the future, and thus drought assessment alone may underestimate the severity of future water shortage. The results obtained from the modeling system can help policy makers to develop reasonable future water-saving planning schemes, as well as drought mitigation measures.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Jinliang Zhang ◽  
Yizi Shang ◽  
Jinyong Liu ◽  
Jian Fu ◽  
Shitao Wei ◽  
...  

Abstract The Jinghe River remains the major sediment source of the Yellow River in China; however, sediment discharge in the Jinghe River has reduced significantly since the 1950s. The objective of this study is to identify the causes of sediment yield variations in the Jinghe River Basin based on soil and water conservation methods and rainfall analyses. The results revealed that soil and water conservation projects were responsible for half of the total sediment reduction; sediment retention due to reservoirs and water diversion projects was responsible for 1.3% of the total reduction. Moreover, the Jinghe River Basin has negligible opportunity to improve its vegetation cover (currently 55% of the basin is covered with lawns and trees), and silt-arrester dams play a smaller role in reducing sediment significantly before they are entirely full. Therefore, new large-scale sediment trapping projects must be implemented across the Jinghe River Basin, where heavy rainfall events are likely to substantially increase in the future, leading to higher sediment discharge.


2014 ◽  
Vol 24 (6) ◽  
pp. 694-705 ◽  
Author(s):  
Lin Zhao ◽  
Aifeng Lyu ◽  
Jianjun Wu ◽  
Michael Hayes ◽  
Zhenghong Tang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document