scholarly journals Investigation of the influence of wind stress in autumn leading to unstable stratification in a meromictic lake using three-dimensional numerical modeling

Author(s):  
T V Iakubaylik
Author(s):  
Lianjie Li ◽  
Jianxin Li ◽  
Haibo Xie ◽  
Hongqiang Liu ◽  
Li Sun ◽  
...  

2015 ◽  
Vol 33 (11) ◽  
pp. 1350-1359 ◽  
Author(s):  
Jonathan H. Perez ◽  
Fumina Tanaka ◽  
Fumihiko Tanaka ◽  
Daisuke Hamanaka ◽  
Toshitaka Uchino

2001 ◽  
Author(s):  
Abhay A. Watwe ◽  
Ravi S. Prasher

Abstract Traditional methods of estimating package thermal performance employ numerical modeling using commercially available finite-volume or finite-element tools. Use of these tools requires training and experience in thermal modeling. This methodology restricts the ability of die designers to quickly evaluate the thermal impact of their die architecture due to the added throughput time required to enlist the services of a thermal analyst. This paper describes the development of an easy to use spreadsheet tool, which performs quick-turn numerical evaluations of the impact of non-uniform die heating. The tool employs well-established finite-volume numerical techniques to solve the steady-state, three-dimensional Fourier equation of conduction in the package geometry. Minimal input data is required and the inputs are customized using visual basic pull-down menus to assist die designers who may not be thermal experts. Data showing comparison of the estimates from the spreadsheet tool with that obtained from a conventional analysis using the commercially available finite element code ANSYS™ is also presented.


Ocean Science ◽  
2010 ◽  
Vol 6 (1) ◽  
pp. 311-329 ◽  
Author(s):  
R. A. Ibrayev ◽  
E. Özsoy ◽  
C. Schrum ◽  
H. İ. Sur

Abstract. A three-dimensional primitive equation model including sea ice thermodynamics and air-sea interaction is used to study seasonal circulation and water mass variability in the Caspian Sea under the influence of realistic mass, momentum and heat fluxes. River discharges, precipitation, radiation and wind stress are seasonally specified in the model, based on available data sets. The evaporation rate, sensible and latent heat fluxes at the sea surface are computed interactively through an atmospheric boundary layer sub-model, using the ECMWF-ERA15 re-analysis atmospheric data and model generated sea surface temperature. The model successfully simulates sea-level changes and baroclinic circulation/mixing features with forcing specified for a selected year. The results suggest that the seasonal cycle of wind stress is crucial in producing basin circulation. Seasonal cycle of sea surface currents presents three types: cyclonic gyres in December–January; Eckman south-, south-westward drift in February–July embedded by western and eastern southward coastal currents and transition type in August–November. Western and eastern northward sub-surface coastal currents being a result of coastal local dynamics at the same time play an important role in meridional redistribution of water masses. An important part of the work is the simulation of sea surface topography, yielding verifiable results in terms of sea level. The model successfully reproduces sea level variability for four coastal points, where the observed data are available. Analyses of heat and water budgets confirm climatologic estimates of heat and moisture fluxes at the sea surface. Experiments performed with variations in external forcing suggest a sensitive response of the circulation and the water budget to atmospheric and river forcing.


2018 ◽  
Vol 44 ◽  
pp. 00194
Author(s):  
Krzysztof Wolski ◽  
Tomasz Tymiński ◽  
Grzegorz Chrobak

This paper presents results of numerical modelling of riverbed segment with riparian vegetation performed with use of CCHE2 software. Vegetation zones are places where dynamic of water flow increases. Therefore, there is a need of careful examination of hydraulic impact structure of such zones. Accurate research is necessary and should be performed with use of physical or numerical models, two or three dimensional. Paper presents distribution of velocity and area of water surface for two variants of vegetation deposition acquired in CCHE2D software and modelled for riverbed with distinctive riparian vegetation. Results point to significant (30–40%) increase of maximal velocities in riverbed with riparian vegetation, while directly near the vegetation there were zones with very low velocities. Local damming occurs before vegetal zone. Maximal shear stress in zones with increased velocity is significantly augmented compared to conditions with no vegetation, which can cause more intensive erosion in those zones


2008 ◽  
Vol 31 (7) ◽  
pp. 1004-1014 ◽  
Author(s):  
Xiaobo Chao ◽  
Yafei Jia ◽  
F. Douglas Shields ◽  
Sam S.Y. Wang ◽  
Charles M. Cooper

Sign in / Sign up

Export Citation Format

Share Document