scholarly journals Development the conceptual design of Knowledge Based System for Integrated Maintenance Strategy and Operation

Author(s):  
Milana ◽  
M K Khan ◽  
J E Munive
Author(s):  
C. P. Huang ◽  
F. W. Liou ◽  
J. J. Malyamakkil ◽  
W. F. Lu

Abstract This paper presents an advisory conceptual design tool for mechanical transmission systems. Space consideration was taken into account during the design process. A prototype function tree was built in the form of knowledge-based system to transfer a designer’s idea into a set of mechanical components. An advisory expert system was also developed to help a designer in decision making. As an example, a packaging machine is designed using the developed system.


Author(s):  
Ze-Lin Liu ◽  
Yong Chen ◽  
You-Bai Xie

Exploring wide multi-disciplinary solution spaces to create conceptual design solutions is a difficult task for human designers due to lack of sufficient multi-disciplinary knowledge. A viable approach would be to develop a computer-aided system to synthesize the wide variety of knowledge for a given design task. However, the existing design synthesis systems are mainly domain-specific, focusing on conceptual design synthesis in a single or few limited disciplines. Therefore, this article introduces the development of a knowledge-based system for multi-disciplinary conceptual design synthesis, including the establishment of a knowledge base for organizing multi-disciplinary principle solutions and a design synthesis algorithm. The implementation of a prototype software is also reported, with the conceptual design of a solar fountain as a demonstrative case. The results of the case study show that the system can automatically and conveniently generate multi-disciplinary conceptual solutions.


2016 ◽  
Vol 25 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Milana Milana ◽  
M Khurshid Khan ◽  
J Eduardo Munive-Hernandez

The importance of maintenance has escalated significantly by the increase in automation in manufacturing processes. This condition changed the perspective of maintenance from being considered as an inevitable cost to being seen as a key business function to drive competitiveness. Consequently, maintenance decisions need to be aligned with the business competitive strategy as well as the requirements of manufacturing/quality functions in order to support manufacturing equipment performance. Therefore, it is required to synchronise the maintenance strategy and operations with business and manufacturing/quality aspects. This article presents the design and development of a Knowledge Based System for Integrated Maintenance Strategy and Operations. The developed framework of the Knowledge Based System for Integrated Maintenance Strategy and Operations is elaborated to show how the Knowledge Based System for Integrated Maintenance Strategy and Operations can be applied to support maintenance decisions. The knowledge-based system integrates the Gauging Absences of Prerequisites methodology in order to deal with different decision-making priorities and to facilitate benchmarking with a target performance state. This is a new contribution to this area. The Knowledge Based System for Integrated Maintenance Strategy and Operations is useful in reviewing the existing maintenance system and provides reasonable recommendations for maintenance decisions with respect to business and manufacturing perspectives. In addition, it indicates the roadmap from the current state to the benchmark goals for the maintenance system.


Author(s):  
V.C. MOULIANITIS ◽  
A.J. DENTSORAS ◽  
N.A. ASPRAGATHOS

The paper presents a knowledge-based system (KBS) for the conceptual design of grippers for handling fabrics. Its main purpose is the integration of the domain knowledge in a single system for the systematic design of this type of grippers. The knowledge presented, in terms of gripper, material and handling process, are classified. The reasoning strategy is based upon a combination of a depth-first search method and a heuristic method. The heuristic search method finds a final solution from a given set of feasible solutions and can synthesize new solutions to accomplish the required specifications. Details of the main features of the system are given, including its ability to take critical design decisions according to four criteria, weighted by the designer. The knowledge-based system was implemented in the Kappa P. C. 2.3.2 environment. Two examples are given to illustrate some critical aspects concerning the KBS development, to explain the operation of the proposed searching heuristic method, and to show its effectiveness in producing design concepts for grippers.


2014 ◽  
Vol 564 ◽  
pp. 619-624 ◽  
Author(s):  
M. Milana ◽  
Mohammed Khurshid Khan ◽  
J. Eduardo Munive

The dependency of maintenance as a manufacturing logistic function has made the considerations and constrains of maintenance decisions complex in nature. The rapid growth of automation in manufacturing process has also increased the role of maintenance as an inseparable business partner. As consequence, maintenance strategy and operations should always be aligned with business and manufacturing perspectives within a holistic and integrated manner to achieve competitive advantage. This paper presents a framework of Knowledge Based System for Integrated Maintenance Strategy and Operation (KBIMSO) linked to business and manufacturing perspectives. The KBIMSO framework has novelty of simultaneously highlighting the elements of business, manufacturing and maintenance perspectives which contribute to direct maintenance performance and can be used by the companies to evaluate their existing maintenance system in relation to business competitive priorities and manufacturing process requirements in order to gain optimal maintenance performance as the competitive driver.


Sign in / Sign up

Export Citation Format

Share Document