scholarly journals Biogas production for electricity from fruit waste: a case study of Gemah Ripah biogas plant, Yogyakarta

Author(s):  
F. Marendra ◽  
D.A. Pramudikto ◽  
A. Rahmada ◽  
H.J. Rimbawan ◽  
R. B. Cahyono ◽  
...  
2019 ◽  
Vol 86 ◽  
pp. 00036 ◽  
Author(s):  
Alina Kowalczyk-Juśko ◽  
Agnieszka Listosz ◽  
Monika Flisiak

Biogas production in Poland is controversial. There is a lot of interest in the construction of installations of various scale, and protests of local communities take place at the same time. Residents do not agree to the construction of biogas plants due to the fear of nuisance related to its functioning. This work is a case study of the area of Kamionka – the rural commune in Poland, in terms of the possibility of locating an agricultural biogas plant. The main sources of substrates for biogas production in the commune were determined. When selecting the appropriate location for an agricultural biogas plant, the focus was on the areas designated in the “Study of conditions and directions for spatial development” as areas with the approval of locating devices generating energy from renewable sources. These properties were analyzed in terms of substrate availability (which are waste from animal production, fruit pomace, waste from processing, biomass of plants grown intentionally), plot size, infrastructure status and distance from protected areas. On this basis, one location was chosen that meets all those criteria. Surveys have shown that residents are afraid of unpleasant smell, noise, emerging waste and explosion risk. Nevertheless, the majority of respondents declared willingness to cooperate with the biogas plant.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 413
Author(s):  
Jakub Mazurkiewicz

The aim of the study is to draw attention to the fact that reducing methane and nitrous oxide emissions as a result of traditional manure storage for several months in a pile is not only a non-ecological solution, but also unprofitable. A solution that combines both aspects—environmental and financial—is the use of manure as a substrate for a biogas plant, but immediately—directly after its removal from the dairy barn. As part of the case study, the energy and economic balance of a model farm with dairy farming for the scenario without biogas plant and with a biogas plant using manure as the main substrate in methane fermentation processes was also performed. Research data on the average emission of ammonia and nitrous oxide from 1 Mg of stored manure as well as the results of laboratory tests on the yield of biogas from dairy cows manure were obtained on the basis of samples taken from the farm being a case study. The use of a biogas installation would allow the emission of carbon dioxide equivalent to be reduced by up to 100 Mg per year. In addition, it has been shown that the estimated payback period for biogas installations is less than 5 years, and with the current trend of increasing energy prices, it may be even shorter—up to 4 years.


2016 ◽  
Vol 832 ◽  
pp. 55-62
Author(s):  
Ján Gaduš ◽  
Tomáš Giertl ◽  
Viera Kažimírová

In the paper experiments and theory of biogas production using industrial waste from paper production as a co-substrate are described. The main aim of the experiments was to evaluate the sensitivity and applicability of the biochemical conversion using the anaerobic digestion of the mixed biomass in the pilot fermentor (5 m3), where the mesophillic temperature was maintained. It was in parallel operation with a large scale fermentor (100 m3). The research was carried out at the biogas plant in Kolíňany, which is a demonstration facility of the Slovak University of Agriculture in Nitra. The experiments proved that the waste arising from the paper production can be used in case of its appropriate dosing as an input substrate for biogas production, and thus it can improve the economic balance of the biogas plant.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Karol Postawa ◽  
Jerzy Szczygieł ◽  
Marek Kułażyński

Abstract Background Increasing the efficiency of the biogas production process is possible by modifying the technological installations of the biogas plant. In this study, specific solutions based on a mathematical model that lead to favorable results were proposed. Three configurations were considered: classical anaerobic digestion (AD) and its two modifications, two-phase AD (TPAD) and autogenerative high-pressure digestion (AHPD). The model has been validated based on measurements from a biogas plant located in Poland. Afterward, the TPAD and AHPD concepts were numerically tested for the same volume and feeding conditions. Results The TPAD system increased the overall biogas production from 9.06 to 9.59%, depending on the feedstock composition, while the content of methane was slightly lower in the whole production chain. On the other hand, the AHPD provided the best purity of the produced fuel, in which a methane content value of 82.13% was reached. At the same time, the overpressure leads to a decrease of around 7.5% in the volumetric production efficiency. The study indicated that the dilution of maize silage with pig manure, instead of water, can have significant benefits in the selected configurations. The content of pig slurry strengthens the impact of the selected process modifications—in the first case, by increasing the production efficiency, and in the second, by improving the methane content in the biogas. Conclusions The proposed mathematical model of the AD process proved to be a valuable tool for the description and design of biogas plant. The analysis shows that the overall impact of the presented process modifications is mutually opposite. The feedstock composition has a moderate and unsteady impact on the production profile, in the tested modifications. The dilution with pig manure, instead of water, leads to a slightly better efficiency in the classical configuration. For the TPAD process, the trend is very similar, but the AHPD biogas plant indicates a reverse tendency. Overall, the recommendation from this article is to use the AHPD concept if the composition of the biogas is the most important. In the case in which the performance is the most important factor, it is favorable to use the TPAD configuration.


Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


2018 ◽  
Vol 8 (11) ◽  
pp. 2083 ◽  
Author(s):  
Magdalena Muradin ◽  
Katarzyna Joachimiak-Lechman ◽  
Zenon Foltynowicz

Implementation of the circular economy is one of the priorities of the European Union, and energy efficiency is one of its pillars. This article discusses an effective use of agri-food industry waste for the purposes of waste-to-energy in biogas plants. Its basic objective is the comparative assessment of the eco-efficiency of biogas production depending on the type of feedstock used, its transport and possibility to use generated heat. The environmental impact of the analysed installations was assessed with the application of the Life Cycle Assessment (LCA) methodology. Cost calculation was performed using the Levelized Cost of Electricity (LCOE) method. The LCA analysis indicated that a biogas plant with a lower level of waste heat use where substrates were delivered by wheeled transport has a negative impact on the environment. The structure of distributed energy production cost indicates a substantial share of feedstock supply costs in the total value of the LCOE ratio. Thus, the factor affecting the achievement of high eco-efficiency is the location of a biogas plant in the vicinity of an agri-food processing plant, from which the basic feedstock for biogas production is supplied with the transmission pipeline, whereas heat is transferred for the needs of production processes in a processing plant or farm.


Sign in / Sign up

Export Citation Format

Share Document