scholarly journals Evaluation of Eco-Efficiency of Two Alternative Agricultural Biogas Plants

2018 ◽  
Vol 8 (11) ◽  
pp. 2083 ◽  
Author(s):  
Magdalena Muradin ◽  
Katarzyna Joachimiak-Lechman ◽  
Zenon Foltynowicz

Implementation of the circular economy is one of the priorities of the European Union, and energy efficiency is one of its pillars. This article discusses an effective use of agri-food industry waste for the purposes of waste-to-energy in biogas plants. Its basic objective is the comparative assessment of the eco-efficiency of biogas production depending on the type of feedstock used, its transport and possibility to use generated heat. The environmental impact of the analysed installations was assessed with the application of the Life Cycle Assessment (LCA) methodology. Cost calculation was performed using the Levelized Cost of Electricity (LCOE) method. The LCA analysis indicated that a biogas plant with a lower level of waste heat use where substrates were delivered by wheeled transport has a negative impact on the environment. The structure of distributed energy production cost indicates a substantial share of feedstock supply costs in the total value of the LCOE ratio. Thus, the factor affecting the achievement of high eco-efficiency is the location of a biogas plant in the vicinity of an agri-food processing plant, from which the basic feedstock for biogas production is supplied with the transmission pipeline, whereas heat is transferred for the needs of production processes in a processing plant or farm.

Energies ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2424
Author(s):  
Jan Martin Zepter ◽  
Jan Engelhardt ◽  
Tatiana Gabderakhmanova ◽  
Mattia Marinelli

Biogas plants may support the transformation towards renewable-based and integrated energy systems by providing dispatchable co-generation as well as opportunities for biogas upgrading or power-to-X conversion. In this paper, a simulation model that comprises the main dynamics of the internal processes of a biogas plant is developed. Based on first-order kinetics of the anaerobic digestion process, the biogas production of an input feeding schedule of raw material can be estimated. The output of the plant in terms of electrical and thermal energy is validated against empirical data from a 3-MW biogas plant on the Danish island of Bornholm. The results show that the model provides an accurate representation of the processes within a biogas plant. The paper further provides insights on the functioning of the biogas plant on Bornholm as well as discusses upgrading potentials of biogas to biomethane at the plant from an energy perspective.


Energies ◽  
2020 ◽  
Vol 13 (15) ◽  
pp. 3761 ◽  
Author(s):  
Abdullah Nsair ◽  
Senem Onen Cinar ◽  
Ayah Alassali ◽  
Hani Abu Qdais ◽  
Kerstin Kuchta

The biogas production technology has improved over the last years for the aim of reducing the costs of the process, increasing the biogas yields, and minimizing the greenhouse gas emissions. To obtain a stable and efficient biogas production, there are several design considerations and operational parameters to be taken into account. Besides, adapting the process to unanticipated conditions can be achieved by adequate monitoring of various operational parameters. This paper reviews the research that has been conducted over the last years. This review paper summarizes the developments in biogas design and operation, while highlighting the main factors that affect the efficiency of the anaerobic digestion process. The study’s outcomes revealed that the optimum operational values of the main parameters may vary from one biogas plant to another. Additionally, the negative conditions that should be avoided while operating a biogas plant were identified.


2020 ◽  
Vol 180 ◽  
pp. 02019 ◽  
Author(s):  
Marzhan Temirbekova ◽  
Madina Aliyarova ◽  
Iliya Iliev ◽  
Aliya Yelemanova ◽  
Saule Sagintayeva

This paper justifies the efficiency of the biogas collection and utilization at the MSW (municipal solid waste) landfill in Almaty with the installation of several modern biogas plants. The optimal mode of processes occurring in a biogas plant is determined by computer generated simulations. Mathematical model parameters were identified to describe biochemical processes occurring in a biogas plant. Two approaches are used to resolve the mathematical model: the finite-difference method for solving the system of differential equations and simulation modeling by using the Any Logic package. A program is written in the algorithmic language C ++. Numerous calculations were carried out, the results of which are presented in curves and their qualitative picture is consistent with the ongoing processes. The created computer program allows to make a preliminary forecast of anaerobic fermentation occurring in the bioreactor depending on volume of the substrate, methane microorganisms and temperature conditions.


2017 ◽  
Vol 22 (1-2) ◽  
pp. 135-150
Author(s):  
Jan Loskot

Abstract In recent years, the European Union is putting a growing emphasis on constructing agricultural biogas plants, especially in the Czech-Polish border region. In this region, there are large areas of agricultural land which can provide biomass as a substrate used in biogas plants. Biogas plants connected to cogeneration units are a useful renewable source of thermal and electrical energy, but they can cause also some problems. Probably the most serious issue is that inadequately technologically operated biogas plants are the source of unpleasant odour which may affect the surrounding population. Therefore, we prepared a continuation of our educational course focused on biogas plants intended for a study program “Physico-technical Measurements and Computer Technology” at the Faculty of Science at the University of Hradec Kralove and for the education of internshipers from the Faculty of Natural Sciences and Technology at the University of Opole. In this part of the course, the students will learn about the problems with odour released from inadequately technologically operated biogas plants and about the ways how to measure and model the odour contamination in the vicinity of the odour source. An important part of this educational course is a practical exercise on the mathematical modelling of odour contamination from an inadequately technologically operated agricultural biogas plant. Thus, the students will be able to perform the odour modelling using the SYMOS’97 methodology which is approved and used as an official tool for air pollution modelling in the Czech Republic. Students will learn that a biogas plant which is well-operated and correctly located in relation to local hydrometeorological conditions does not annoy local residents by odour.


2016 ◽  
Vol 21 (1-2) ◽  
pp. 61-74 ◽  
Author(s):  
Jan Loskot ◽  
Marek Smolík ◽  
Lidmila Hyšplerová ◽  
Karol Radocha ◽  
Jan Kříž ◽  
...  

AbstractRecently, there is a growing pressure on a rapid construction of agricultural biogas plants, particularly in the Czech-Polish border region. It is an area with large expanses of agricultural land which can serve to supply biogas plants with biomass. This strategy should contribute to harmonize the common agricultural policy of the European Union. A need for qualified operators of these stations on this territory is also increasing. Therefore we first include a demonstration of an education program for students in the field of agricultural waste anaerobic fermentation and biogas production. We present here the first part of an innovative approach which we use in the teaching program “Physico-technical Measurements and Computer Technology” at the Faculty of Science at the University of Hradec Kralove and also in the education of internshipers from the Faculty of Natural Sciences and Technology at the University of Opole. There are requirements to fulfil labour market expectations and to make this subject more attractive for the students. Students’ theoretical and practical preparation constitutes a comprehensive source of knowledge and skills required in a real life job. Joined theoretical and practical knowledge gained by students, reinforced by the skills developed during task analysis followed by their solution, provides the future graduate higher quality abilities and better position in the labour market.


2006 ◽  
pp. 41-46
Author(s):  
László Sallai ◽  
Tamás Molnár ◽  
Dezső Fodor

In our study we examine the technical facilities of biogas production in the economic environment of a given region. The region can be considered as typical: it has animal farms, a poultry-processing plant with the characteristic problems of environment load and by-product handling. Biogas can be used for energetic purposes, and, in large scale, it can be sold as electric energy. The heat coming from the engine and the generator can be collected in heat exchangers and can be used for preparing hot water and for heating. One third of the gained energy is electric, two thirds are heat. The aim of the local owner and the economic management is to increase the rate of cost-effectiveness in general. We examined the tecnnical and economic conditions of establishing a biogas plant (using data of an existing pigfarm). We planned the biogas plant and calculated the expected investment and operational costs and return.


2019 ◽  
Vol 4 (12) ◽  
pp. 142-148
Author(s):  
Abdul Ghani Noori ◽  
Agha Mohammad Fazli

The central zone of Afghanistan has enough cattle to be considered for generating biogas. The cattle population in the zone was 634,524, 647,229 and 633,362 heads in 2012-13, 2014-15 and 2016-17, respectively. As a result of field experiments, the fresh manure generation of cattle in the zone is 19 kg head-1 day-1, fraction recoverable of the generated cattle manure is 80% and the proportion of dry matter of the manure is 23.7%. Based on these manure parameters, about 834,320, 851,026 and 832,792 tons of dry matter recoverable could be generated in the mentioned three years, respectively. By using a biogas digester, this dry matter recoverable could be enough for generating about 86,769,319, 88,506,691 and 86,610,419 m3 of biogas in 2012-13, 2014-15 and 2016-17, respectively. The amount of generated biogas is equivalent of 1,735, 1,770 and 1,732 TJ of energy in the mentioned years, respectively. In the case study of Kabul province, it was found that till now biogas plants are not constructed in the zone. For financial evaluation of biogas utilization, a dairy of 24 cattle was selected. It was determined that the manure from 24 cattle can generate about 9 m3 per day (3,285 m3 per year) of biogas in a 24 m3 DSAC-Model biogas digester. By comparing biogas energy value from the equivalent energy of LPG, biogas has value of 66,521.25 Afg per year (978 USD per year). By considering the requirements of cooking and lighting of a family of 8 members, the generated biogas (9 m3/day) in the mentioned dairy farm can be enough for two families. Considering the situation of the zone DSAC-Model biogas plant was considered suitable among various types of it. The techno-financial analyze result was quite attractive. For this case, the NPV was 2,664.6 USD, B/C 2.37, IRR was 33% and the discounted payback period (PP) was 4.09 years (4 years and about one month). As all these financial indicators are in the acceptable range, therefore the biogas generation with DSAC-Model biogas plant in the central zone of Afghanistan is beneficent.


Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2668 ◽  
Author(s):  
Valerii Havrysh ◽  
Antonina Kalinichenko ◽  
Grzegorz Mentel ◽  
Tadeusz Olejarz

Ukraine has enough biomass resources for biogas production. However, this energy potential is not used sufficiently. This research is aimed at examining the current experience of commercial biogas systems in the Europe Union and its adaptation for Ukraine. Special attention was paid to economic indicators, such as specific investment costs, production costs (biogas, biomethane, and electricity), and incentives. Using statistical data for the European Union and Ukraine, the biogas potential for Ukraine (based on European experience) was determined. The economic competitiveness of biogas production was evaluated compared to alternatives, such as photovoltaic, wind power, biomass, conventional fuels, and liquid biofuels. The results showed that biogas complexes have higher specific investment costs and produce more expensive electricity. It was highlighted that agricultural residues and industrial waste are sustainable feedstocks for biogas systems. A perspective biogas plant is a plant that is an integrated part of the circular bioeconomy that is based on organic residues. Biomethane production (as a substitution for vehicle fuel) combined with capture and utilization of carbon dioxide is a more profitable pathway. Awareness and perception of the importance of biogas are key factors for the development of the biogas industry. To develop an effective strategy for the biogas industry, it is necessary to create a positive image in order to raise awareness and knowledge of biogas technologies.


2017 ◽  
Vol 60 (5) ◽  
pp. 1713-1720 ◽  
Author(s):  
Yi Wang ◽  
Wanqin Zhang ◽  
Hongmin Dong ◽  
Zhiping Zhu ◽  
Baoming Li

Abstract. With the rapid growth of large-scale and intensive swine farms have come many ecological and environmental problems associated with the substantially increased and concentrated animal waste production. In this article, a swine manure and flushed slurry to renewable energy management system is present and discussed. This system was installed in a commercial feeder-to-finish swine farm with 18,000 head of swine in Beijing, China, and included two mesophilic upflow solids reactors (USRI and USRII, 500 m3 and 700 m3) and one psychrophilic plug-flow reactor (PFR, 1000 m3). In this study, USRII was monitored throughout a whole year to evaluate the performance of this swine waste to energy system. The biogas plant used mixed solid swine manure and flushed slurry as substrate with a relatively low organic loading rate (OLR) of 0.7 to 1.8 kg volatile solids (VS) m-3 d-1. The hydraulic retention time (HRT) varied from 15 to 22 days depending on the season. Less added water contributed to the longer HRT and more concentrated influent in winter. In winter, the specific methane production (SMP) of the digester was 0.43 m3 CH4 kg-1 VSadded, which was slightly lower than the value reported in Europe (0.45 m3 CH4 kg-1 VSadded) but about 48.3% higher than that in Asia (0.29 m3 CH4 kg-1 VSadded). This indicated that the performance of this USR in winter was stable, with a higher biogas production, and up to 90% of the VS was removed as well. However, the low OLR limited the volumetric methane production rate to only 0.21 to 0.57 m3 m-3 d-1. Keywords: Flushed slurry, Large-scale biogas plant, Monitoring, Performance, Swine manure.


2021 ◽  
pp. 0958305X2110417
Author(s):  
Mahmood Mahmoodi-Eshkaftaki ◽  
Hossein Rahmanian-Koushkaki ◽  
Mohammad Rafie Rafiee

The improved systems of biogas production usually increase the energy consumption of biogas plants. Therefore, it is very important to determine an appropriate improvement system to increase plant efficiency. For this purpose, a biogas plant with a biological self-purification system was energetically and exergetically analyzed, and its performance was compared with that of a base plant. To keep the temperature of digesters up to 310.2 K, a solar water heater was used. It was able to maintain a high level of efficiency for both plants. The energy analysis of the plants indicated that the overall energetic efficiency of both plants was very close. The exergy analysis of the plants showed that the overall exergetic efficiency of the self-purification biogas plant (76.24%) was higher than that of the base plant (66.78%). This is due to the fact that the total exergy destruction rate of the self-purification plant was lower than that of the base plant and the exergy rate of biogas output of the self-purification plant was higher than that of the base plant. The exergy analyses of both plant components showed that although the highest exergy destruction rates were attributed to the principle digester and separation unit, they showed the highest exergetic improvement potential rates. These results confirm that the digesters in biogas plants have a great potential to be improved exergetically, and the self-purification system is a suitable improvement system to increase the plant efficiency exergetically.


Sign in / Sign up

Export Citation Format

Share Document