scholarly journals Preparation of PZT Thin Film/Ni Particle Composite Magnetoelectric Materials

Author(s):  
Yongjiang Di ◽  
Sijing Chen ◽  
Yang Jiang ◽  
Bi Jia ◽  
Pengjun Cao
2014 ◽  
Vol 134 (4) ◽  
pp. 85-89
Author(s):  
Kazutaka Sueshige ◽  
Fumiaki Honda ◽  
Tadatomo Suga ◽  
Masaaki Ichiki ◽  
Toshihiro Itoh

2020 ◽  
Vol 59 (SP) ◽  
pp. SPPD09
Author(s):  
Sang-Hyo Kweon ◽  
Kazuki Tani ◽  
Kensuke Kanda ◽  
Sahn Nahm ◽  
Isaku Kanno
Keyword(s):  

2009 ◽  
Vol 421-422 ◽  
pp. 95-98
Author(s):  
Tsuyoshi Aoki ◽  
Shigeyoshi Umemiya ◽  
Masaharu Hida ◽  
Kazuaki Kurihara

Piezoelectric films using d15 shear-mode can be applied to many useful MEMS devices. The small displacement derived from the d15 shear-mode was directly observed by a SPM measurement. An isolated PZT(52/48) active part having a pair of driving Cu electrodes was processed in a 5 m-thick sputtering film. The displacement measurement of the active part and its FEM analysis suggested that the estimated d15 piezoelectric constant of the film was 590 pm/V. And, the d31 value of the film was -120 pm/V measured by a conventional cantilever method. The obtained piezoelectric constants of the PZT film are near those of bulk.


2001 ◽  
Vol 92 (1-3) ◽  
pp. 156-160 ◽  
Author(s):  
Korbinian Kunz ◽  
Peter Enoksson ◽  
Göran Stemme

1993 ◽  
Vol 310 ◽  
Author(s):  
In K. Yoo ◽  
Seshu B. Desu ◽  
Jimmy Xing

AbstractMany attempts have been made to reduce degradation properties of Lead Zirconate Titanate (PZT) thin film capacitors. Although each degradation property has been studied extensively for the sake of material improvement, it is desired that they be understood in a unified manner in order to reduce degradation properties simultaneously. This can be achieved if a common source(s) of degradations is identified and controlled. In the past it was noticed that oxygen vacancies play a key role in fatigue, leakage current, and electrical degradation/breakdown of PZT films. It is now known that space charges (oxygen vacancies, mainly) affect ageing, too. Therefore, a quantitative ageing mechanism is proposed based on oxygen vacancy migration under internal field generated by either remanent polarization or spontaneous polarization. Fatigue, leakage current, electrical degradation, and polarization reversal mechanisms are correlated with the ageing mechanism in order to establish guidelines for simultaneous degradation control of PZT thin film capacitors. In addition, the current pitfalls in the ferroelectric test circuit is discussed, which may cause false retention, imprint, and ageing.


1999 ◽  
Vol 14 (4) ◽  
pp. 1190-1193 ◽  
Author(s):  
J. H. Kim ◽  
A. T. Chien ◽  
F. F. Lange ◽  
L. Wills

Epitaxial PbZr0.5Ti0.5O3 (PZT) thin films were grown on top of a SrRuO3 epitaxial electrode layer on a (100) SrTiO3 substrate by the chemical solution deposition method at 600 °C. The microstructure of the PZT thin film was investigated by x-ray diffraction and transmission electron microscopy, and the ferroelectric properties were measured using the Ag/PZT/SRO capacitor structure. The PZT thin film has the epitaxial orientational relationship of (001) [010]PZT ║ (001) [010]SRO ║ (001) [010]STO with the substrate. The remnant (Pr ) and saturation polarization (Ps) density were measured to be Pr ~ 51.4 µC/cm2 and Ps ~ 62.1 µC/cm2 at 5 V, respectively. Ferroelectric fatigue measurements show that the net-switching polarization begins to drop (to 98% of its initial value) after 7 × 108 cycles.


Author(s):  
S. Yin ◽  
J. Abergel ◽  
A. Bontempi ◽  
T. Ricart ◽  
G. Le Rhun ◽  
...  

2005 ◽  
Vol 20 (3) ◽  
pp. 726-733 ◽  
Author(s):  
Jong-Jin Choi ◽  
Gun-Tae Park ◽  
Chee-Sung Park ◽  
Hyoun-Ee Kim

The orientation and electrical properties of Pb(Zr,Ti)O3 thin films deposited on a Pt/Ti/SiO2/Si substrate using lanthanum nickel nitrate as a conductive buffer layer were analyzed. The lanthanum nickel nitrate buffer layer was not only electrically conductive but also effective in controlling the texture of the lead zirconate titanate (PZT) thin film. The role of the lanthanum nickel nitrate buffer layer and its effects on the orientation of the PZT thin film were analyzed by x-ray diffraction, electron beam back-scattered diffraction, and scanning electron microscopy. The annealed lanthanum nickel nitrate buffer layer was sufficiently conducting for use in longitudinal electrode configuration devices. The dielectric, ferroelectric, and piezoelectric properties of the highly (100) oriented PZT films grown with the lanthanum nickel nitrate buffer layer were measured and compared with those of (111) and (100) oriented PZT films deposited without a buffer layer.


1995 ◽  
Vol 29 (1-4) ◽  
pp. 145-148 ◽  
Author(s):  
E.L. Colla ◽  
A.L. Kholkin ◽  
D. Taylor ◽  
A.K. Tagantsev ◽  
K.G. Brooks ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document