scholarly journals Thermal Transmittance and the Embodied Energy of Timber Frame Lightweight Walls Insulated with Straw and Reed

Author(s):  
M Miljan ◽  
J Miljan
2019 ◽  
Vol 252 ◽  
pp. 05015 ◽  
Author(s):  
Przemysław Brzyski ◽  
Sylwia Duda ◽  
Andrzej Raczkowski

Hemp-lime composite is a thermal insulating material used as a filling in timber frame construction walls. It is a material based on the wooden part of industrial hemp stalk (hemp shives) and lime binder. In practice, different wall thicknesses, composites with different thermal properties and various configurations of timber structure are used. These factors affect the temperature distribution in the wall. In the thermally weaker areas of walls, there is a greater risk of condensation and mould growth. This issue is important while designing walls based on organic materials. The paper presents the two-dimensional (2D) heat-transfer analysis based on the finite-element method, using THERM software. Several variants of external walls were adopted for the analysis. Thermal parameters of hemp-lime composites used in the analysis were obtained from our own research. The results of the analysis were presented as the values of the thermal transmittance coefficient and linear thermal transmittance equivalent to timber construction. The temperature distribution for an exemplary wall was also shown graphically in the form of isotherms and colour-flooded isotherms.


Materials ◽  
2019 ◽  
Vol 12 (15) ◽  
pp. 2392 ◽  
Author(s):  
Brzyski ◽  
Grudzińska ◽  
Majerek

This article analyses the connection of the two types of floors on the ground (floors on joists and self-supporting floors), with the external wall made of a hemp–lime composite for the occurrence of thermal bridges. Several factors that may affect the heat transfer in the junction were taken into account: the level of the floor on the ground, the wall thickness, the thermal conductivity of the composite, and the location of the timber frame construction. The technology of using hemp and lime is relatively new, and there is a lack of such analyses in the literature. The two-dimensional (2D) heat-transfer in the described construction joints was analyzed based on the finite-element method with the use of the THERM 7.4 software. The results were presented as averaged and linear thermal transmittance coefficients dependent on the above mentioned factors. The possibility of surface condensation was also checked. The differences in the values of the thermal transmittance of the junction between the two variants of ground floors reached around 0.13%–1.67% and the values of linear thermal transmittance factor reached approximately 2.43%–10.13%. The junctions with the highest floor level showed a decrease in the thermal transmittance value by about 3.00%–5.77% and in the linear thermal transmittance, by about 21.98%–53.83%, compared to the junctions with the lowest floor level. Calculations showed that almost all analyzed junctions are free from surface condensation causing mould growth, because the minimum temperature factors f0.25 were higher than 0.78 (except for junctions with the lowered floor levels). The junction with a floor on the timber joists showed better thermal parameters than the junction with a self-supporting floor in each of the analyzed variants. By increasing the level of floor insulation, it is possible to limit the thermal bridges and improve the thermal properties of the junction.


Author(s):  
Magdalena Grudzińska ◽  
Przemysław Brzyski

Thermal bridges increase heat losses in buildings and reduce the temperature of the internal envelope surface, causing moisture condensation and mould growth. This is an important issue for building materials based on organic components such as a hemp-lime composite, as they are particularly susceptible to biological degradation.The hemp-lime composite is used as a filling in timber frame construction. The increased cross-section of wooden elements together with the geometry change in the construction joints can form thermal bridges. The paper presents numerical analyses of temperature distribution in the area of construction elements connections, taking into account several variants of junctions: external walls, corners, and window placement in a wall. The thermal parameters of hemp-lime composites used in the analyses were obtained from the authors’ own research.Despite relatively good insulating properties, timber elements have a noticeable influence on the local increase of the heat transfer in hemp-lime composite structures, forming thermal bridges in the partitions themselves and in the construction nodes. However, the linear thermal transmittance coefficients in the presented joints were not very significant (in the range of 0.026 ÷ 0.092 W/(m·K) depending on the type of connection), proving the usefulness of this type of construction in energy-efficient buildings.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1211
Author(s):  
Francesco Zaccaro ◽  
John Richard Littlewood ◽  
Carolyn Hayles

Calculating Repeating Thermal Bridges (RTBs) for Timber Frame (TF) closed panels that could occur in Offsite Manufactured (OSM) Modern Methods of Construction (MMC), such as exterior walls for nearly-to-zero operational energy dwellings to be constructed in Wales, United Kingdom (UK) is discussed in this paper. Detailed calculations for linear RTBs due to the TF components are often neglected when evaluating thermal transmittance (known as U-values hereafter). The use of standard TF fractions does not allow the designer to perceive their detrimental impact on RTBs and consequent U-values for exterior walls. With the increase of the thermal performance of exterior walls and as such lower U-values due to ever-tightening Building Regulations, specifically related to the energy use and carbon emissions from the space heating of dwellings, then the impacts of RTBs requires more investigation. By not calculating the potential of linear RTB at the design stage could lead to a performance gap where assumed U-values for exterior walls differ from manufacture to onsite. A TF detail from the Welsh manufacture has been chosen as a case study, to develop and apply a methodology using manufacturing drawings to evaluate TF fraction and their effect on the thermal performance.


2022 ◽  
Vol 6 (1) ◽  
pp. 22
Author(s):  
Konstantinos Ninikas ◽  
Porfyrios Tallaros ◽  
Andromachi Mitani ◽  
Dimitrios Koutsianitis ◽  
Georgios Ntalos ◽  
...  

The objective of this paper is to compare the thermal behavior of a light frame timber wall by measuring 15 test samples with various insulation materials versus a theoretical simulation with the use of a software. This work establishes the variance between the two different methods to measure the thermal transmittance coefficient of timber walls. It is verified that the mean percentage alteration between the two methods is 4.25%. Furthermore, this approach proved that with the use of a simulation software, additional readings (humidity, vapor flux, heat flux, and vapor pressure) can also be considered and measured, enhancing the overall development of a timber wall. This can provide additional information regarding to the characteristics of the masonry’s elements assisting in an improved design of a timber wall with upgraded performance.


2018 ◽  
Vol 83 (754) ◽  
pp. 955-964
Author(s):  
Kazunori TAKADA ◽  
Koichi TATEMATSU ◽  
Kei SHIMONOSONO ◽  
Hirofumi HAYAMA ◽  
Taro MORI ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document