scholarly journals Effect of Type of Nitrogen Sources and Concentration on Protease Production: Fish Waste Hydrolysate as a Potential Low Cost Source

Author(s):  
F H Zainuddin ◽  
G K Chua ◽  
F N Chew ◽  
R A Samah ◽  
S H Mortan ◽  
...  
2020 ◽  
Author(s):  
Sangeeta Negi ◽  
Sapna Jain ◽  
Anand Kumar

Abstract In order to achieve high yield of fungal protease in a very cost effective way and to meet its increased market demand, current study deals with the screening of various agro-wastes as carbon source for the production of protease from Rhizopus oryzae (SN5) / NCIM-1447 under solid state fermentation. Substrates and culture parameters such as wheat bran, soybean meal, black-gram husk, rice husk, mixture of wheat bran, soybean meal, nitrogen sources, pH, temperature and incubation time were first optimized with one factor at time strategy and then EVOP factorial and yield of alkaline protease was achieved 412.8 U/gds at 28 o C and pH=6 after 72 hours of fermentation taking wheat bran and soybean as a substrate in 4:1 ratio. Further Artificial Neural Networks (ANN), was trained with data of EVOP and yield of protease was enhanced up to 422.6 U/gds with wheat bran: soyabean in ratio of 70:30, pH 6.2 at 30°C. The evolved process and Rhizopus oryzae (SN5)/ NCIM-1447 strain would be promising for protease production at industrial scale at low cost.


2016 ◽  
Vol 10 (1) ◽  
pp. 335-341 ◽  
Author(s):  
Aishwarya Ramkumar ◽  
Nallusamy Sivakumar ◽  
Reginald Victor

Industrial biotechnology processes have recently been exploited for an economic utilization of wastes to produce value added products. Of which, fish waste is one of the rich sources of proteins that can be utilized as low cost substrates for microbial enzyme production. Fish heads, tails, fins, viscera and the chitinous materials make up the wastes from fish industries. Processing these wastes for the production of commercial value added products could result in a decrease in the cost of production. In addition, we can eliminate the pollution of the environment and health issues due to the improper disposal of these fish wastes. This review highlights the potential use of fish waste as a cheaper substrate for the production of economically important protease enzyme.


2012 ◽  
Vol 9 (2) ◽  
pp. 949-961 ◽  
Author(s):  
El-Sayed E. Mostafa ◽  
Moataza M. Saad ◽  
Hassan M. Awad ◽  
Mohsen H. Selim ◽  
Helmy M. Hassan

Microbial protease represents the most important industrial enzymes, which have an active role in biotechnological processes. The objective of this study was to isolate new strain ofStreptomycesthat produce proteolytic enzymes with novel properties and the development of the low-cost medium. An alkaline protease producer strain NRC-15 was isolated from Egyptian soil sample. The cultural, morphological, physiological characters and chemotaxonomic evidence strongly indicated that the NRC-15 strain represents a novel species of the genusStreptomyces, hence the nameStrptomyces pseudogrisiolusNRC-15. The culture conditions for higher protease production by NRC-15 were optimized with respect to carbon and nitrogen sources, metal ions, pH and temperature. Maximum protease production was obtained in the medium supplemented with 1% glucose, 1% yeast extract, 6% NaCl and 100 μmol/L of Tween 20, initial pH 9.0 at 50 °C for 96 h. The current results confirm that for this strain, a great ability to produce alkaline proteases, which supports the use of applications in industry.


2020 ◽  
Author(s):  
Sangeeta Negi ◽  
Kumari Vibha

Abstract In order to achieve high yield of fungal protease in a very cost effective way and to meet its increased market demand, current study deals with the screening of various agro-wastes as carbon source for the production of protease from Rhizopus oryzae (SN5) / NCIM-1447 under solid state fermentation. Substrates and culture parameters such as wheat bran, soybean meal, black-gram husk, rice husk, mixture of wheat bran, soybean meal, nitrogen sources, pH, temperature and incubation time were first optimized with one factor at time strategy and then EVOP factorial and yield of alkaline protease was achieved 412.8 U/gds at 28oC and pH=6 after 72 hours of fermentation taking wheat bran and soybean as a substrate in 4:1 ratio. Further Artificial Neural Networks (ANN), was trained with data of EVOP and yield of protease was enhanced up to 422.6 U/gds with wheat bran: soyabean in ratio of 70:30, pH 6.2 at 30°C. The evolved process and Rhizopus oryzae (SN5)/NCIM-1447 strain would be promising for protease production at industrial scale at low cost.


2020 ◽  
Author(s):  
Sangeeta Negi ◽  
Sapna Jain ◽  
Anand Kumar

Abstract In order to achieve high yield of fungal protease in a very cost effective way and to meet its increased market demand, current study deals with the screening of various agro-wastes as carbon source for the production of protease from Rhizopus oryzae (SN5) / NCIM-1447 under solid state fermentation. Substrates and culture parameters such as wheat bran, soybean meal, black-gram husk, rice husk, mixture of wheat bran, soybean meal, nitrogen sources, pH, temperature and incubation time were first optimized with one factor at time strategy and then EVOP factorial and yield of alkaline protease was achieved 412.8 U/gds at 28 o C and pH=6 after 72 hours of fermentation taking wheat bran and soybean as a substrate in 4:1 ratio. Further Artificial Neural Networks (ANN), was trained with data of EVOP and yield of protease was enhanced up to 422.6 U/gds with wheat bran: soyabean in ratio of 70:30, pH 6.2 at 30°C. The evolved process and Rhizopus oryzae (SN5)/ NCIM-1447 strain would be promising for protease production at industrial scale at low cost.


2018 ◽  
Vol 36 (No. 2) ◽  
pp. 146-153 ◽  
Author(s):  
Gharwalová Lucia ◽  
Paulová Leona ◽  
Patáková Petra ◽  
Branská Barbora ◽  
Melzoch Karel

Biotechnological production of lactic acid has experienced a boom that is hindered only by the lack of low-cost, abundant material that might be used as a substrate for lactic acid bacteria. Such material should contain not only carbon but also complex nitrogen sources, amino acids and vitamins necessary for the balanced growth of the bacteria. Here, for the first time, a combination of hydrolysates of wheat straw and chicken feathers was used as a complete waste cultivation medium for lactic acid production. It was shown to be a promising substrate for lactic acid production, reducing the medium price by 73% compared with MRS broth, providing more than 98% lactic acid yield and high productivity (2.28 ± 0.68 g/l/h) in a fed-batch process using Lactobacillus reuterii LHR14.


2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Gustavo Carvalho do Nascimento ◽  
Ryhára Dias Batista ◽  
Claudia Cristina Auler do Amaral Santos ◽  
Ezequiel Marcelino da Silva ◽  
Fabrício Coutinho de Paula ◽  
...  

β-fructofuranosidase (invertase) andβ-D-fructosyltransferase (FTase) are enzymes used in industrial processes to hydrolyze sucrose aiming to produce inverted sugar syrup or fructooligosaccharides. In this work, a blackAspergillussp. PC-4 was selected among six filamentous fungi isolated from canned peach syrup which were initially screened for invertase production. Cultivations with pure carbon sources showed that invertase and FTase were produced from glucose and sucrose, but high levels were also obtained from raffinose and inulin. Pineapple crown was the best complex carbon source for invertase (6.71 U/mL after 3 days of cultivation) and FTase production (14.60 U/mL after 5 days of cultivation). Yeast extract and ammonium chloride nitrogen sources provided higher production of invertase (6.80 U/mL and 6.30 U/mL, respectively), whereas ammonium nitrate and soybean protein were the best nitrogen sources for FTase production (24.00 U/mL and 24.90 U/mL, respectively). Fermentation parameters for invertase using yeast extract wereYP/S= 536.85 U/g andPP= 1.49 U/g/h. FTase production showed values ofYP/S= 2,627.93 U/g andPP= 4.4 U/h using soybean protein. The screening for best culture conditions showed an increase of invertase production values by 5.10-fold after 96 h cultivation compared to initial experiments (fungi bioprospection), while FTase production increased by 14.60-fold (44.40 U/mL) after 168 h cultivation.A. carbonariusPC-4 is a new promising strain for invertase and FTase production from low cost carbon sources, whose synthesized enzymes are suitable for the production of inverted sugar, fructose syrups, and fructooligosaccharides.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Biplab Kumar Dash ◽  
M. Mizanur Rahman ◽  
Palash Kumar Sarker

A study was carried out with a newly isolated bacterial strain yielding extracellular amylase. The phylogenetic tree constructed on the basis of 16S rDNA gene sequences revealed this strain as clustered with the closest members ofBacillussp. and identified asBacillus subtilisBI19. The effect of various fermentation conditions on amylase production through shake-flask culture was investigated. Rice flour (1.25%) as a cheap natural carbon source was found to induce amylase production mostly. A combination of peptone and tryptone as organic and ammonium sulfate as inorganic nitrogen sources gave highest yield. Maximum production was obtained after 24 h of incubation at 37°C with an initial medium pH 8.0. Addition of surfactants like Tween 80 (0.25 g/L) and sodium lauryl sulfate (0.2 g/L) resulted in 28% and 15% increase in enzyme production, respectively. Amylase production was 3.06 times higher when optimized production conditions were used. Optimum reaction temperature and pH for crude amylase activity were 50°C and 6.0, respectively. The crude enzyme showed activity and stability over a fair range of temperature and pH. These results suggest thatB. subtilisBI19 could be exploited for production of amylase at relatively low cost and time.


RSC Advances ◽  
2014 ◽  
Vol 4 (59) ◽  
pp. 31462-31468 ◽  
Author(s):  
Devarapaga Madhu ◽  
Bhaskar Singh ◽  
Yogesh C. Sharma

A low cost raw material obtained from the discarded parts of fish (Cirrhinus mrigala, Cirrhinus cirrhosa, Cirrhinus reba) was utilized as feedstock oil and catalyst for the synthesis of biodiesel.


2016 ◽  
Vol 4 (3) ◽  
pp. 397-401
Author(s):  
M.D. BalaKumaran ◽  
R. Santhi

In the present study, chicken feather powder was screened for its application as the substrate for the production of keratinolytic protease by Bacillus subtilis strain PS03. Bacillus subtilis produced a high level of keratinolytic protease using chicken feather powder as substrate. With feather powder as substrate, physical factors such as incubation time, pH and temperature were optimized for increased keratinolytic protease production by Bacillus subtilis. The enzyme production was enhanced when using maltose as carbon source and yeast extract as nitrogen sources. SDS-PAGE analysis indicated the molecular weight of 46 kDa of the partially purified keratinolytic protease. The keratinolytic protease enzyme was stable over a pH range of 6 – 9 and temperature range of 35 - 50°C with maximum activity at pH 9 and 40°C. Based on the results, the use of feather powder as substrate for keratinolytic protease production is cost effective and is easy to scale up. Considering the availability and cost, chicken feather powder is considered as an ideal substrate for keratinolytic protease production in an industrial point of view. Int J Appl Sci Biotechnol, Vol 4(3): 397-401


Sign in / Sign up

Export Citation Format

Share Document