Fabrication of MSC-laden composites of hyaluronic acid hydrogels reinforced with MEW scaffolds for cartilage repair

2021 ◽  
Author(s):  
Jonathan Galarraga ◽  
Ryan Locke ◽  
Claire Witherel ◽  
Brendan Stoeckl ◽  
Miguel Castilho ◽  
...  

Abstract Hydrogels are of interest in cartilage tissue engineering due to their ability to support the encapsulation and chondrogenesis of mesenchymal stromal cells (MSCs). However, features such as hydrogel crosslink density, which can influence nutrient transport, nascent matrix distribution, and the stability of constructs during and after implantation must be considered in hydrogel design. Here, we first demonstrate that more loosely crosslinked (i.e., softer, ~2 kPa) norbornene-modified hyaluronic acid (NorHA) hydrogels support enhanced cartilage formation and maturation when compared to more densely crosslinked (i.e., stiffer, ~6-60 kPa) hydrogels, with a >100-fold increase in compressive modulus after 56 days of culture. While soft NorHA hydrogels mature into neocartilage suitable for the repair of articular cartilage, their initial moduli are too low for handling and they do not exhibit the requisite stability needed to withstand the loading environments of articulating joints. To address this, we reinforced NorHA hydrogels with polycaprolactone (PCL) microfibers produced via melt-electrowriting (MEW). Importantly, composites fabricated with MEW meshes of 400 m spacing increased the moduli of soft NorHA hydrogels by ~50-fold while preserving the chondrogenic potential of the hydrogels. There were minimal differences in chondrogenic gene expression and biochemical content (e.g., DNA, GAG, collagen) between hydrogels alone and composites, whereas the composites increased in compressive modulus to ~350 kPa after 56 days of culture. Lastly, integration of composites with native tissue was assessed ex vivo; MSC-laden composites implanted after 28 days of pre-culture exhibited increased integration strengths and contact areas compared to acellular composites. This approach has great potential towards the design of cell-laden implants that possess both initial mechanical integrity and the ability to support neocartilage formation and integration for cartilage repair.

Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 714
Author(s):  
Alvin Kai-Xing Lee ◽  
Yen-Hong Lin ◽  
Chun-Hao Tsai ◽  
Wan-Ting Chang ◽  
Tsung-Li Lin ◽  
...  

Cartilage injury is the main cause of disability in the United States, and it has been projected that cartilage injury caused by osteoarthritis will affect 30% of the entire United States population by the year 2030. In this study, we modified hyaluronic acid (HA) with γ-poly(glutamic) acid (γ-PGA), both of which are common biomaterials used in cartilage engineering, in an attempt to evaluate them for their potential in promoting cartilage regeneration. As seen from the results, γ-PGA-GMA and HA, with glycidyl methacrylate (GMA) as the photo-crosslinker, could be successfully fabricated while retaining the structural characteristics of γ-PGA and HA. In addition, the storage moduli and loss moduli of the hydrogels were consistent throughout the curing durations. However, it was noted that the modification enhanced the mechanical properties, the swelling equilibrium rate, and cellular proliferation, and significantly improved secretion of cartilage regeneration-related proteins such as glycosaminoglycan (GAG) and type II collagen (Col II). The cartilage tissue proof with Alcian blue further demonstrated that the modification of γ-PGA with HA exhibited suitability for cartilage tissue regeneration and displayed potential for future cartilage tissue engineering applications. This study built on the previous works involving HA and further showed that there are unlimited ways to modify various biomaterials in order to further bring cartilage tissue engineering to the next level.


2020 ◽  
Vol 43 (1) ◽  
Author(s):  
Maria Inês Wits ◽  
Gabriela Cabanas Tobin ◽  
Maiele Dornelles Silveira ◽  
Karine Gehlen Baja ◽  
Luisa Maria Macedo Braga ◽  
...  

2018 ◽  
Vol 9 (28) ◽  
pp. 3959-3960 ◽  
Author(s):  
Feng Yu ◽  
Xiaodong Cao ◽  
Yuli Li ◽  
Lei Zeng ◽  
Bo Yuan ◽  
...  

Correction for ‘An injectable hyaluronic acid/PEG hydrogel for cartilage tissue engineering formed by integrating enzymatic crosslinking and Diels–Alder “click chemistry”’ by Feng Yu et al., Polym. Chem., 2014, 5, 1082–1090.


Biomaterials ◽  
2010 ◽  
Vol 31 (11) ◽  
pp. 3103-3113 ◽  
Author(s):  
R. Jin ◽  
L.S. Moreira Teixeira ◽  
P.J. Dijkstra ◽  
C.A. van Blitterswijk ◽  
M. Karperien ◽  
...  

2014 ◽  
Vol 10 (1) ◽  
pp. 214-223 ◽  
Author(s):  
Peter A. Levett ◽  
Ferry P.W. Melchels ◽  
Karsten Schrobback ◽  
Dietmar W. Hutmacher ◽  
Jos Malda ◽  
...  

2011 ◽  
Vol 17 (7) ◽  
pp. 717-730 ◽  
Author(s):  
Clara R. Correia ◽  
Liliana S. Moreira-Teixeira ◽  
Lorenzo Moroni ◽  
Rui L. Reis ◽  
Clemens A. van Blitterswijk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document