scholarly journals Corrigendum: Biofabrication of cell-free dual drug-releasing biomimetic scaffolds for meniscal regeneration (2022 Biofabrication 14 015001)

2021 ◽  
Vol 14 (1) ◽  
pp. 019502
Author(s):  
Li Hao ◽  
Zhao Tianyuan ◽  
Yang Zhen ◽  
Cao Fuyang ◽  
Wu Jiang ◽  
...  
2021 ◽  
Author(s):  
Hao Li ◽  
Tianyuan Zhao ◽  
Zhen Yang ◽  
Fuyang Cao ◽  
Jiang Wu ◽  
...  

2015 ◽  
Vol 12 (6) ◽  
pp. 782-794 ◽  
Author(s):  
Megha Matlapudi ◽  
Afrasim Moin ◽  
Raghavender Medishetti ◽  
K. Rajendra ◽  
Ashok Raichur ◽  
...  
Keyword(s):  

2020 ◽  
Vol 16 ◽  
Author(s):  
Wei Liu ◽  
Shifeng Liu ◽  
Yunzhe Li ◽  
Peng Zhou ◽  
Qian ma

Abstract:: Surgery to repair damaged tissue, which is caused by disease or trauma, is being carried out all the time, and a desirable treatment is compelling need to regenerate damaged tissues to further improve the quality of human health. Therefore, more and more research focus on exploring the most suitable bionic design to enrich available treatment methods. 3D-printing, as an advanced materials processing approach, holds promising potential to create prototypes with complex constructs that could reproduce primitive tissues and organs as much as possible or provide appropriate cell-material interfaces. In a sense, 3D printing promises to bridge between tissue engineering and bionic design, which can provide an unprecedented personalized recapitulation with biomimetic function under the precise control of the composition and spatial distribution of cells and biomaterials. This article describes recent progress in 3D bionic design and the potential application prospect of 3D printing regenerative medicine including 3D printing biomimetic scaffolds and 3D cell printing in tissue engineering.


Polymers ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1254
Author(s):  
Lingjie Ke ◽  
Zhiguo Li ◽  
Xiaoshan Fan ◽  
Xian Jun Loh ◽  
Hongwei Cheng ◽  
...  

Drug resistance always reduces the efficacy of chemotherapy, and the classical mechanisms of drug resistance include drug pump efflux and anti-apoptosis mediators-mediated non-pump resistance. In addition, the amphiphilic polymeric micelles with good biocompatibility and high stability have been proven to deliver the drug molecules inside the cavity into the cell membrane regardless of the efflux of the cell membrane pump. We designed a cyclodextrin (CD)-based polymeric complex to deliver chemotherapeutic doxorubicin (DOX) and Nur77ΔDBD gene for combating pumps and non-pump resistance simultaneously. The natural cavity structure of the polymeric complex, which was comprised with β-cyclodextrin-graft-(poly(ε-caprolactone)-adamantly (β-CD-PCL-AD) and β-cyclodextrin-graft-(poly(ε-caprolactone)-poly(2-(dimethylamino) ethyl methacrylate) (β-CD-PCL-PDMAEMA), can achieve the efficient drug loading and delivery to overcome pump drug resistance. The excellent Nur77ΔDBD gene delivery can reverse Bcl-2 from the tumor protector to killer for inhibiting non-pump resistance. The presence of terminal adamantyl (AD) could insert into the cavity of β-CD-PCL-PDMAEMA via host-guest interaction, and the releasing rate of polymeric inclusion complex was higher than that of the individual β-CD-PCL-PDMAEMA. The polymeric inclusion complex can efficiently deliver the Nur77ΔDBD gene than polyethylenimine (PEI-25k), which is a golden standard for nonviral vector gene delivery. The higher transfection efficacy, rapid DOX cellular uptake, and significant synergetic tumor cell viability inhibition were achieved in a pump and non-pump drug resistance cell model. The combined strategy with dual drug resistance mechanisms holds great potential to combat drug-resistant cancer.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2351
Author(s):  
Zheng Su ◽  
Daye Sun ◽  
Li Zhang ◽  
Miaomiao He ◽  
Yulin Jiang ◽  
...  

In this work, we designed and fabricated a multifunctional nanocomposite system that consists of chitosan, raspberry-like silver nanoparticles, and graphene oxide. The room temperature atmospheric pressure microplasma (RT-APM) process provides a rapid, facile, and environmentally-friendly method for introducing silver nanoparticles into the composite system. Our composite can achieve a pH controlled single and/or dual drug release. Under pH 7.4 for methyl blue loaded on chitosan, the drug release profile features a burst release during the first 10 h, followed by a more stabilized release of 70–80% after 40–50 h. For fluorescein sodium loaded on graphene oxide, the drug release only reached 45% towards the end of 240 h. When the composite acted as a dual drug release system, the interaction of fluorescein sodium and methyl blue slowed down the methyl blue release rate. Under pH 4, both single and dual drug systems showed a much higher release rate. In addition, our composite system demonstrated strong antibacterial abilities against E. coli and S. aureus, as well as an excellent photothermal conversion effect under irradiation of near infrared lasers. The photothermal conversion efficiency can be controlled by the laser power. These unique functionalities of our nanocomposite point to its potential application in multiple areas, such as multimodal therapeutics in healthcare, water treatment, and anti-microbials, among others.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Chao Zhang ◽  
Fanghua Zhang ◽  
Mengnan Han ◽  
Xuming Wang ◽  
Jie Du ◽  
...  

AbstractCombination chemotherapy is still of great importance as part of the standard clinical care for patients with HER2 positive breast cancer. As an attractive component, gold nanoparticles (AuNPs) have been extensively studied as biosafety nanomaterials, but they are rarely explored as drug nanocarriers for targeted co-delivery of multiple chemotherapeutics. Herein, a novel affibody-DNA hybrid strands modified AuNPs were fabricated for co-loading nucleoside analogue (5-fluorodeoxyuridine, FUdR) and anthracycline (doxorubicin, Dox). FUdRs were integrated into DNA hybrid strands decorated on AuNPs by DNA solid phase synthesis, and Dox molecules were intercalated into their duplex regions. Affibody molecules coupled to the DNA hybrid strands were distributed the surface of AuNPs, giving them targeting for HER2. The new dual-drug-containing affibody-DNA-AuNPs (Dox@affi-F/AuNPs) owned compact and stable spherical nanostructures, and precise drug loading. Cytotoxicity tests demonstrated that these nanoparticles caused a higher inhibition in HER2 overexpressing breast cancer cells, and showed better synergistic antitumor activity than simple mixture of the two drugs. The related mechanistic studies proved that Dox@affi-F/AuNPs achieved a remarkable combined antitumor activity of Dox and FUdR by promoting more cells to enter apoptosis pathway. Our work provided a nanomedicine platform for targeted co-delivery of nucleoside analog therapeutics and anthracycline anticancer drugs to achieve synergistic treatment of HER2+ cancer.


2021 ◽  
Vol 123 ◽  
pp. 111975
Author(s):  
Farideh Davani ◽  
Mohsen Alishahi ◽  
Mohammad Sabzi ◽  
Mohammad Khorram ◽  
Amir Arastehfar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document