scholarly journals Production of silver nanoparticles by green synthesis using artichoke ( Cynara scolymus L.) aqueous extract and measurement of their electrical conductivity

2018 ◽  
Vol 9 (4) ◽  
pp. 045002 ◽  
Author(s):  
Sandra Sampaio ◽  
Júlio C Viana
2021 ◽  
pp. 0958305X2198988
Author(s):  
Nur Syakirah Rabiha Rosman ◽  
Noor Aniza Harun ◽  
Izwandy Idris ◽  
Wan Iryani Wan Ismail

The emergence of technology to produce nanoparticles (1 nm – 100 nm in size) has drawn significant researchers’ interests. Nanoparticles can boost the antimicrobial, catalytic, optical, and electrical conductivity properties, which cannot be achieved by their corresponding bulk. Among other noble metal nanoparticles, silver nanoparticles (AgNPs) have attained a special emphasis in the industry due to their superior physical, chemical, and biological properties, closely linked to their shapes, sizes, and morphologies. Proper knowledge of these NPs is essential to maximise the potential of biosynthesised AgNPs in various applications while mitigating risks to humans and the environment. This paper aims to critically review the global consumption of AgNPs and compare the AgNPs synthesis between conventional methods (physical and chemical) and current trend method (biological). Related work, advantages, and drawbacks are also highlighted. Pertinently, this review extensively discusses the current application of AgNPs in various fields. Lastly, the challenges and prospects of biosynthesised AgNPs, including application safety, oxidation, and stability, commercialisation, and sustainability of resources towards a green environment, were discussed.


RSC Advances ◽  
2021 ◽  
Vol 11 (24) ◽  
pp. 14624-14631
Author(s):  
Pablo Eduardo Cardoso-Avila ◽  
Rita Patakfalvi ◽  
Carlos Rodríguez-Pedroza ◽  
Xochitl Aparicio-Fernández ◽  
Sofía Loza-Cornejo ◽  
...  

Gold and silver nanoparticles were synthesized at room temperature using an aqueous extract from dried rosehips acting as reducing and capping agents with no other chemicals involved.


2017 ◽  
Vol 6 (5) ◽  
Author(s):  
Zahra Abbasi ◽  
Sholeh Feizi ◽  
Elham Taghipour ◽  
Parinaz Ghadam

AbstractSilver nanoparticles (AgNPs) have widespread applications. Recently, the synthesis of NPs using plant extract has attracted much attention. In this study, with an easy and rapid process at room temperature, AgNPs were produced by the aqueous extract of dried


2019 ◽  
Vol 13 (3) ◽  
pp. 223-231
Author(s):  
Zahra Goli ◽  
Cobra Izanloo

Background: Silver nanoparticles have a profound role in the field of high sensitivity biomolecular detection, catalysis, biosensors and medicine. In the present study, aqueous extract of Dracocephalum kotschyi has been used for the synthesis of silver nanoparticles. Objective: In this study, we evaluated the antioxidant features and the possibility of biosynthesis of AgNPs using an aqueous extract of Dracocephalum kotschyi and also evaluated the antibacterial activities of the synthesized nanoparticles. Methods: An eco-friendly and cost-effective protocol for the synthesis of Ag nanoparticles by utilizing a renewable natural resource, aqueous solution of Dracocephalum kotschyi, was proposed. Synthesized nanoparticles were characterized by UV–Vis spectroscopy, SEM, EDS, and XRD pattern. Results: At first, the extract of Dracocephalum kotschyi was assessed to determine and confirm the presence of an antioxidant feature. Resuscitation of one mM silver nitrate solution was carried out by the herbal extract. The solution containing AgNPs obtained from green synthesis had a maximum optical density at 225 nm. In addition, the presence of AgNPs was approved by energy-dispersive X-ray spectroscopy (EDS). Images of the scanning electron microscope demonstrated that the synthesized AgNPs had the shape of rods and the size distribution of 48-51 nm. One of the benefits of this method is a uniform size distribution. Moreover, the effects of reaction time and concentration of the herbal extract were assessed by ultraviolet-visible (UV-Vis) spectroscopy. In the end, we assessed the antibacterial impact of the synthesized AgNPs against some pathogenic bacterial strains. According to the results, the produced nanostructures had a proper impact on two bacteria of Escherichia coli and Staphylococcus aureus. Conclusion: According to the results of the present study, Dracocephalum kotschyi can be a suitable compound for the synthesis of nanostructures due to its indigenous cultivation and great medicinal properties.


PLoS ONE ◽  
2019 ◽  
Vol 14 (6) ◽  
pp. e0216496 ◽  
Author(s):  
Omer Erdogan ◽  
Muruvvet Abbak ◽  
Gülen Melike Demirbolat ◽  
Fatih Birtekocak ◽  
Mehran Aksel ◽  
...  

2017 ◽  
Vol 2 (3) ◽  
pp. 114-116
Author(s):  
Mona Ghoorchibeigi ◽  
Kambiz Larijani ◽  
Parviz Aberoomand Azar ◽  
Karim Zare ◽  
Iraj Mehregan

2016 ◽  
Vol 6 (1) ◽  
pp. 41-46 ◽  
Author(s):  
Gopalu Karunakaran ◽  
Matheswaran Jagathambal ◽  
Alexander Gusev ◽  
Evgeny Kolesnikov ◽  
Arup Ratan Mandal ◽  
...  

Abstract


Sign in / Sign up

Export Citation Format

Share Document