Dual-function of the ZnO nano-sheets as light absorber scaffold and electron transport material in perovskite solar cells

2021 ◽  
Vol 12 (4) ◽  
pp. 045004
Author(s):  
Cong-Dan Bui ◽  
Van-Phuoc Cao ◽  
Van-Quy Nguyen ◽  
Thi-Hang Bui ◽  
Van-Dang Tran

Abstract Recent advances in the development of perovskite solar cells using CH3NH3PbI3 as the absorber material have reached over 18.7% in power conversion efficiency. The best performance perovskite-based cells required support of a mesoporous charge collector. In this work we present a new process for preparing perovskite solar cells with the structure of AZO/Au/AZO(AAA)/ZnO-sheets/CH3NH3PbI3/HTM/Au. Herein, ZnO nanosheets layer was prepared by electrochemical deposition method using zinc nitrate hexahydrate as nutrient solution, then annealed at 150 °C in ambient air. The results show that high crystal ZnO sheets assembled simply from AZO top layer could act as electron transporter and scaffold for perovskite layer. The presentation of ZnO scaffold was exploited to improve 19% in power conversion efficiency, offering great promise for further improvement of the low-temperature, low-cost processing solar technology.

2020 ◽  
pp. 2150096
Author(s):  
Jing Gao ◽  
Chujian Liao ◽  
Yanqun Guo ◽  
Difan Zhou ◽  
Zhigang Zeng ◽  
...  

The perovskite membrane with large particle size, uniform coverage and high quality is the prerequisite for the preparation of efficient and stable perovskite solar cells. Various additives have been used to increase the grain size and improve the film morphology and crystal quality. In this paper, methylammonium chloride (MACl) was proposed to obtain high crystalline quality of [Formula: see text] perovskite absorption layer. The results show that the adding ammonium methyl chloride into the precursor of tricationic perovskite not only passivates surface defects to form high-quality and large-grain perovskite films, but also facilitates the formation of pure [Formula: see text]-phase [Formula: see text]. Meanwhile, the designed perovskite precursor solutions were used to fabricate mesoporous perovskite solar cells (PSCs). Owing to the perovskite layer consisting of optimized MACl doping, the short-circuit current density [Formula: see text] of PSCs reaches 23.81 mA/cm2, which is 2.73 mA/cm2 higher than the primary [Formula: see text] based on PSCs. The obtained power conversion efficiency (PCE) increases from 13.67% to 17.59%.


2016 ◽  
Vol 9 (9) ◽  
pp. 2892-2901 ◽  
Author(s):  
Jacob Tse-Wei Wang ◽  
Zhiping Wang ◽  
Sandeep Pathak ◽  
Wei Zhang ◽  
Dane W. deQuilettes ◽  
...  

Realizing the theoretical limiting power conversion efficiency (PCE) in perovskite solar cells requires a better understanding and control over the fundamental loss processes occurring in the bulk of the perovskite layer and at the internal semiconductor interfaces in devices.


2015 ◽  
Vol 3 (32) ◽  
pp. 16860-16866 ◽  
Author(s):  
Jun Yin ◽  
Jing Cao ◽  
Xu He ◽  
Shangfu Yuan ◽  
Shibo Sun ◽  
...  

Through optimization of the thickness of the m-TiO2layer, rather stable perovskite solar cells which maintain over 85% of the initial power conversion efficiency (PCE) even after storage for 100 days in air were accomplished.


RSC Advances ◽  
2015 ◽  
Vol 5 (82) ◽  
pp. 66981-66987 ◽  
Author(s):  
Yangyang Du ◽  
Hongkun Cai ◽  
Jian Ni ◽  
Juan Li ◽  
Hailong Yu ◽  
...  

Solution-processed perovskite solar cells (PSCs), which utilized organic poly PTB7 as a hole-transport layer, achieved a power conversion efficiency (PCE) as high as 13.29% when fabricated in ambient air.


Nanoscale ◽  
2019 ◽  
Vol 11 (45) ◽  
pp. 21824-21833 ◽  
Author(s):  
Jyoti V. Patil ◽  
Sawanta S. Mali ◽  
Chang Kook Hong

Controlling the grain size of the organic–inorganic perovskite thin films using thiourea additives now crossing 2 μm size with >20% power conversion efficiency.


2021 ◽  
Author(s):  
Stav Rahmany ◽  
Lioz Etgar

Much effort has been made to push the power conversion efficiency of perovskite solar cells (PSCs) towards the theoretical limit. Recent studies have shown that post deposition treatment of barrier...


2019 ◽  
Vol 7 (10) ◽  
pp. 5635-5642 ◽  
Author(s):  
Lin Yang ◽  
Yohan Dall'Agnese ◽  
Kanit Hantanasirisakul ◽  
Christopher E. Shuck ◽  
Kathleen Maleski ◽  
...  

Addition of the Ti3C2 into SnO2 enhanced the power conversion efficiency due to the good conductivity of Ti3C2 nanosheets.


Sign in / Sign up

Export Citation Format

Share Document