Performance evaluation of coated carbide tool during face milling of AISI 304 under different cutting environments

2019 ◽  
Vol 6 (5) ◽  
pp. 056546 ◽  
Author(s):  
Pragat Singh ◽  
J S Dureja ◽  
Harwinder Singh ◽  
M S Bhatti
2017 ◽  
Vol 749 ◽  
pp. 178-184 ◽  
Author(s):  
Israel Martinez ◽  
Ryutaro Tanaka ◽  
Yasuo Yamane ◽  
Katsuhiko Sekiya ◽  
Keiji Yamada ◽  
...  

This study reports an experimental investigation about the wear behavior of TiN and TiCN coated carbide tools during the face milling of pearlitic and ferritic ductile cast iron. Pearlitic ductile cast iron caused the highest cutting forces and flank wear in both TiN and TiCN coated tools. Due to its protective effect, the TiCN coated carbide tool outperformed the TiN coated carbide tool regarding flank wear. The main issue when face milling ferritic ductile cast iron with TiN coated tools was notching wear. The principal reason for notch wear was pointed as adhesive wear caused for the high tendency of ferrite to adhere on the tool. The results demonstrated that the TiCN coating did not showed notching wear when face milling ferritic ductile cast iron, therefore a good choice of coating material can prevent notching wear.


2021 ◽  
Author(s):  
Nurfarahin Zainuddin ◽  
Safian Sharif ◽  
Mohd Azlan Suhaimi ◽  
Amrifan Saladin Mohruni ◽  
Muhammad Yanis ◽  
...  

2018 ◽  
Author(s):  
Kai Guo ◽  
Bin Yang ◽  
Jie Sun ◽  
Vinothkumar Sivalingam

Titanium alloys are widely utilized in aerospace thanks to their excellent combination of high-specific strength, fracture, corrosion resistance characteristics, etc. However, titanium alloys are difficult-to-machine materials. Tool wear is thus of great importance to understand and quantitatively predict tool life. In this study, the wear of coated carbide tool in milling Ti-6Al-4V alloy was assessed by characterization of the worn tool cutting edge. Furthermore, a tool wear model for end milling cutter is established with considering the joint effect of cutting speed and feed rate for characterizing tool wear process and predicting tool wear. Based on the proposed tool wear model equivalent tool life is put forward to evaluate cutting tool life under different cutting conditions. The modelling process of tool wear is given and discussed according to the specific conditions. Experimental work and validation are performed for coated carbide tool milling Ti-6Al-4V alloy.


Sign in / Sign up

Export Citation Format

Share Document