scholarly journals Effects of particulate agglomerated degree on deformation behaviors and mechanical properties of in-situ ZrB2 nanoparticles reinforced AA6016 matrix composites by finite element modeling

2020 ◽  
Vol 7 (3) ◽  
pp. 036507 ◽  
Author(s):  
Yue Sun ◽  
Yutao Zhao ◽  
Jili Wu ◽  
Xizhou Kai ◽  
Zhenyu Zhang ◽  
...  
2021 ◽  
pp. 107754632110267
Author(s):  
Jiandong Huang ◽  
Xin Li ◽  
Jia Zhang ◽  
Yuantian Sun ◽  
Jiaolong Ren

The dynamic analysis has been successfully used to predict the pavement response based on the finite element modeling, during which the stiffness and mass matrices have been established well, whereas the method to determine the damping matrix based on Rayleigh damping is still under development. This article presents a novel method to determine the two parameters of the Rayleigh damping for dynamic modeling in pavement engineering. Based on the idealized shear beam model, a more reasonable method to calculate natural frequencies of different layers is proposed, by which the global damping matrix of the road pavement can be assembled. The least squares method is simplified and used to calculate the frequency-independent damping. The best-fit Rayleigh damping is obtained by only determining the natural frequencies of the two modal. Finite element model and in-situ field test subjected by the same falling weight deflectometer pulse loads are performed to validate the accuracy of this method. Good agreements are noted between simulation and field in-situ results demonstrating that this method can provide a more accurate approach for future finite element modeling and back-calculation.


1996 ◽  
Vol 444 ◽  
Author(s):  
S. M. Myers ◽  
D. M. Follstaedt ◽  
J. A. Knapp ◽  
T. R. Christenson

AbstractDual ion implantation of titanium and carbon was shown to produce an amorphous surface layer in annealed bulk nickel, in electroformed Ni, and in electroformed Ni7 5Fe 2 5. Diamond-tip nanoindentation coupled with finite-element modeling quantified the elastic and plastic mechanical properties of the implanted region. The amorphized matrix, with a thickness of about 100 nm, has a yield stress of approximately 6 GP and an intrinsic hardness near 16 GPa, exceeding by an order of magnitude the corresponding values for annealed bulk Ni. Implications for micro-electromechanical systems are discussed.


2014 ◽  
Vol 2014 (04) ◽  
pp. 511-515 ◽  
Author(s):  
Usama Umer ◽  
Mohammad Ashfaq ◽  
Jaber Abu Qudeiri ◽  
Hussein Mohammed ◽  
Abdalmonaem Hussein ◽  
...  

1996 ◽  
Vol 438 ◽  
Author(s):  
J. A. Knapp ◽  
D. M. Follstaedt ◽  
J. C. Barbour ◽  
S. M. Myers ◽  
J. W. Ager ◽  
...  

AbstractWe present a methodology based on finite-element modeling of nanoindentation data to extract reliable and accurate mechanical properties from thin, hard films and surface-modified layers on softer substrates. The method deduces the yield stress, Young's modulus, and hardness from indentations as deep as 50% of the layer thickness.


2018 ◽  
Vol 33 (17) ◽  
pp. 2494-2503 ◽  
Author(s):  
Pengfei Duan ◽  
Yuqing Xia ◽  
Steve Bull ◽  
Jinju Chen

Abstract


2018 ◽  
Vol 773 ◽  
pp. 3-9 ◽  
Author(s):  
Ilya A. Morozov ◽  
Anton Y. Beliaev ◽  
Roman I. Izyumov

Stiff coating on the phase-separated soft polyurethane substrate under the compression deformation is investigated by the finite element modeling (FEM). External strain leads to the wrinkling of layer surface, which is characterized by a set of wavelengths and amplitudes. The influence of the thickness and stiffness of the layer, elastic modulus of the substrate on the structural-mechanical properties of the deformed surface is studied. The results of the model are in good accordance with the experiment (plasma immersion ion impanation of nitrogen ions into the polyurethane substrate) and allowed to estimate the modulus of the coating and the deformation of the surface.


Sign in / Sign up

Export Citation Format

Share Document