scholarly journals The metadynamic recrystallization behavior of ultrahigh-strength stainless steel: effects of precipitates and shear bands

Author(s):  
Xiao-hui Wang ◽  
Zhen-bao Liu ◽  
Jian-xiong Liang ◽  
Zhi-yong Yang ◽  
Yue Qi

Abstract The metadynamic recrystallization behavior of Cr-Co-Ni-Mo ultrahigh-strength martensitic stainless steel was studied in a double-pass isothermal compression test, and a metadynamic recrystallization kinetics model for softening was established. The results showed that the metadynamic recrystallization softening rate of the steel not only depended on the deformation temperature and strain rate but was also related to the dynamic precipitation and the local shear bands in the steel. When the deformation temperature was below 1050 °C, the dynamically precipitated M6C carbides pinned the grain boundaries and hindered metadynamic recrystallization. When the steel was deformed at a deformation temperature of 1000~1050 °C and a strain rate of 1.0~5.0 s-1, a large number of local shear bands were generated. The local shear bands increased the number of nucleation sites for dynamic recrystallization and enhanced the softening rate of metadynamic recrystallization.

2014 ◽  
Vol 217-218 ◽  
pp. 195-200
Author(s):  
Ren Bo Song ◽  
Ya Ping Li ◽  
Yong Jin Wang ◽  
Cui Qing Zhao

Semi-solid billet of 9Cr18 martensitic stainless steel with globular grains was made by a wavelike sloping plate experimental device, and hot compression tests were carried out in the semi-solid state of 9Cr18 semi-solid billet on Gleeble-1500 thermal simulation testing machine at the temperatures of 1250°C ~1300°C and the strain rates of 0.1 s-1~5.0 s-1to investigate the effects of thixoforming parameters on its deformation characteristics and mechanism. According to the true stress-strain curves obtained from the test, the influence of deformation temperature and strain rate on 9Cr18 semi-solid billet deformation resistance was investigated, and the deformation resistance model of specimen with coexistence of solid and liquid phases was established. In this paper, it was found that deformation mechanism changed because of different deformation temperature and strain rate. Dynamic recrystallization occured at 1250°C in different phases separately. So that big fine recrystallized grains were achieved at the soft primary austenite region while small recrystallized grains were achieved at the hard solidified liquid region. The melted metal would be extruded from the centre of the specimen to the free surface completely when the temperature was higher than 1275°C. And then specimen became FGM (functionally graded materials), with phases and properties graded distribution perpendicular to the stress direction. When thixoforming temperature reached 1300 °C, martensitic transformation occurred after rapid cooling. The mathematics models of the relation between stress and temperatures, fraction of solid, deformation rates and deformation degree of 9Cr18 semi-solid billet were regressed and established based on the dates attained from the compression deformation experiments. The R value was 0.991, and the RMSE value was 3.57.


2015 ◽  
Vol 817 ◽  
pp. 367-373
Author(s):  
Xiao Ya Yang ◽  
Xi Tao Wang ◽  
Gen Qi Wang

The hot tensile deformation behaviors of 316LN austenitic stainless steel (ASS) were studied on a Gleeble-1500D thermal simulator under the deformation temperature of 1173-1473 K and strain rate of 0.01-1 s-1. The effects of deformation temperature and strain rate on hot deformation behaviors were analyzed. Based on experimental data, the constitutive equation was established, and the predicted peak stresses by the developed model agree well with the experimental data. Microstructure near the fracture and the percentage reduction of area were studied, and the results showed that the microstructural evolution has great influences on the percentage reduction of area. Under the deformation temperature of 1473K with the strain rate of 1s-1, the grain was the finest and most homogenous, and in this deformation condition the percentage reduction of area was the highest of 79.8%.


2018 ◽  
Vol 37 (7) ◽  
pp. 635-647 ◽  
Author(s):  
Le Li ◽  
Li-yong Wang

AbstractIn order to study dynamic recrystallization behavior of the as-extruded 3Cr20Ni10W2 under isothermal compression conditions, a cellular automaton (CA) model was applied to simulate hot compression. Analysis on the strain–stress curves indicates that dynamic recrystallization is the main softening mechanism for the 3Cr20Ni10W2 when the deformation occurred in the temperature range of 1203–1303 K with an interval of 50 K and strain rate range of 0.01–10 s−1. The deformation temperature and strain rate have a significant influence on the dynamically recrystallized grain size. Subsequently, a CA model is established to simulate the dynamic recrystallization behaviors of the studied alloy. The simulated results show that the mean grain size increases with the increased deformation temperature and decreases with the increased strain rate, which is consistent with the experimental result. In addition, the average absolute relative error, which is 13.14%, indicates that the process of the dynamic recrystallization and the dynamically recrystallized grain size can be well predicted by the present CA model.


2016 ◽  
Vol 693 ◽  
pp. 674-679
Author(s):  
Hai Peng Ji ◽  
Li Ge Zhang ◽  
Jing Liu ◽  
Tai Yong Wang

The established cellular automata model of dynamic recrystallization for 316LN simulated microstructure evolution of recrystallization nucleation and grain growth under different conditions. And on the basis of cellular automata model, the influence of strain, strain rate, deformation temperature on dynamic recrystallization behavior was analyzed. Though the hot compress experiment done on the Gleeble-3500 thermo mechanical simulator, combined with metallographic experiment, the microstructure at deformation temperature of 950 oC, 1050 oC and 1150 oC with strain rate of 0.001 s-1, 0.01 s-1, 0.1 s-1 and 1 s-1 was obtained. Simulation results are compared with metallographic microstructure, the error is small.


Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 585 ◽  
Author(s):  
Changqing Huang ◽  
Xiaodong Jia ◽  
Zhiwu Zhang

To study the factors that affect the mechanical properties of materials, double-pass hot compression tests were performed under different deformation parameters using a Gleeble-3500 thermo-simulation machine. The static softening behavior of 5754 aluminium alloy during testing was analyzed by the 0.2% offset-stress method. The results show that the static softening fraction was greatly influenced by deformation parameters and rapidly increased with increasing delay time, strain rate and deformation temperature. In addition, a mesoscopic cellular automaton (CA) model was employed to simulate the microstructural evolution of the static recrystallization (SRX) during the double-pass hot compression test of the 5754 aluminium alloy. The results show that the SRX nuclei first formed along the grain boundaries, where the energy was sufficient, and deformation parameters had a significant influence on the SRX of the 5754 aluminium alloy. The recrystallized volume fraction increased with increasing temperature, strain rate, and delay time among deformation stages. The mean recrystallized grain size increased with increasing deformation temperature and delay time. However, the mean grain size was slightly reduced with an increase in the strain rate from 0.1 s−1 to 1 s−1 at constant temperature and delay time.


2014 ◽  
Vol 933 ◽  
pp. 27-31
Author(s):  
Yin Hui Yang

The effect of deformation temperature on microstructure, flow stress and corrosion resistance of 2205 duplex stainless steel was investigated at low strain rate of 0.005 s-1. The flow curve analysis showed that the specimen was mainly characterized with dynamic recovery (DRV) at 850 °C, and the characteristic of dynamic recrystallization (DRX) was enhanced with deformation temperature increasing to 950 and 1050 °C, then flow curves presented steady state with characteristic of DRV at 1150 and 1250 °C. Microstructure analysis exhibited the austenite DRX at deformation temperatures of 1050 and 1150 °C. The specimens deformed at temperatures ranging from 850 to 1250 °C and strain rate of 0.005 s-1presented active-transpassive behavior, indicating faster corrosion rate compared with the as-received, which can be attributed to more ferrite (δ) and austenite (γ) grain boundaries or δ/γ phase boundaries formation.


Sign in / Sign up

Export Citation Format

Share Document