scholarly journals Modeling and Simulation of the Static Recrystallization of 5754 Aluminium Alloy by Cellular Automaton

Metals ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 585 ◽  
Author(s):  
Changqing Huang ◽  
Xiaodong Jia ◽  
Zhiwu Zhang

To study the factors that affect the mechanical properties of materials, double-pass hot compression tests were performed under different deformation parameters using a Gleeble-3500 thermo-simulation machine. The static softening behavior of 5754 aluminium alloy during testing was analyzed by the 0.2% offset-stress method. The results show that the static softening fraction was greatly influenced by deformation parameters and rapidly increased with increasing delay time, strain rate and deformation temperature. In addition, a mesoscopic cellular automaton (CA) model was employed to simulate the microstructural evolution of the static recrystallization (SRX) during the double-pass hot compression test of the 5754 aluminium alloy. The results show that the SRX nuclei first formed along the grain boundaries, where the energy was sufficient, and deformation parameters had a significant influence on the SRX of the 5754 aluminium alloy. The recrystallized volume fraction increased with increasing temperature, strain rate, and delay time among deformation stages. The mean recrystallized grain size increased with increasing deformation temperature and delay time. However, the mean grain size was slightly reduced with an increase in the strain rate from 0.1 s−1 to 1 s−1 at constant temperature and delay time.

2021 ◽  
Vol 118 (2) ◽  
pp. 202
Author(s):  
Fei Li ◽  
Liwen Zhang ◽  
Chi Zhang ◽  
Qing Yang ◽  
Chaoqun Li ◽  
...  

The static recrystallization (SRX) behavior of a low carbon Nb–V–Ti microalloyed steel X70 was investigated by two-pass hot compression tests. The compression tests were carried out at deformation temperatures of 1000–1150 °C, strain rates of 0.01–5 s−1, pre-strains of 0.1–0.2 and interval times of 1–50 s. The effects of deformation parameters on SRX behavior were analyzed. The experimental results showed that deformation temperature, pre-strain and strain rate had significant influence on SRX fraction, while initial grain size had a smaller impact. The effects of deformation parameters on SRX microstructure were discussed, and the microstructure evolution process was analyzed. Higher deformation temperature, strain rate and pre-strain lead to larger SRX fraction. The kinetics and recrystallized grain size models for SRX of X70 pipeline steel were developed. Comparison between the predicted results and the experimental ones indicated that the established equations could give a reasonable description for SRX behavior of X70 pipeline steel.


2020 ◽  
Vol 993 ◽  
pp. 482-491
Author(s):  
Yun Fei Cao ◽  
Wei Yu ◽  
Huan Yang ◽  
Wen Gao Chang ◽  
Zeng Qiang Man

Refinement and uniform austenite grains are essential to obtain excellent and homogenous properties for non-quenched and tempered steel, which is mainly affected by static recrystallization of the rolling process. Using the Gleeble-3500 thermal simulation test machine, 20% compression test was carried out for two passes at 850~1050 °C (interval of 50 °C) and different pass interval time conditions to study the static softening and recrystallization behavior of 38MnSiVS non-quenched and tempered steel during deformation process. The effects of strain rate, deformation temperature and interval time on static softening rate and austenite recrystallization fraction were analyzed. The results showed that the increase of deformation temperature and the increase of pass interval time had more significant impact on the static recrystallization volume fraction of 38MnSiVS steel, while the influence of strain rate was relatively smaller. When the deformation temperature was 950 °C or higher, the non-conditioning steel 38MnSiVS could undergo complete recrystallization, and partial recrystallization occurred in the temperature range of 850-950 °C. A static recrystallization volume fraction model of non-regulatory steel 38MnSiVS was established. The static recrystallization activation energy was 296.7 kJ·mol-1, and the static recrystallization volume fraction model had a relative error of 2%.


Materials ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 3862
Author(s):  
Lei Liu ◽  
Yunxin Wu ◽  
Hai Gong ◽  
Abdulrahaman Shuaibu Ahmad ◽  
Fang Dong ◽  
...  

In this paper, the static softening mechanism of a 2219 aluminum alloy was studied based on a double-pass isothermal compression test. For the experiment, different temperatures (623 K, 723 K, and 773 K), strain rates (0.1/s, 1/s, and 10/s), deformation ratios (20%, 30%, and 40%), and insulation periods (5 s, 30 s, and 60 s) were used. Based on the double-pass flow stress curves obtained from the experiment, the step rate expressed by the equivalent dynamic recrystallization fraction is dependent on the deformation parameters, which increases with the increase in strain rate and insulation time, while it decreases with the increase in temperature and strain. Based on the microstructure observed using electron backscattered diffraction (EBSD), the static softening mechanism of the Al 2219 alloy is mainly static recovery and incomplete static recrystallization. A new expression for the static recrystallization fraction is proposed using the reduction rate of the sub-grain boundary. The dependent rule on the deformation parameters is consistent with the step rate, but it is of physical significance. In addition, the modified static recrystallization kinetics established by the new SRX fraction method was proven to have a good modeling and prediction performance under given deformation conditions.


2020 ◽  
Vol 990 ◽  
pp. 36-43
Author(s):  
Dian Xiu Xia ◽  
Heng Ke Du ◽  
Xin En Zhang ◽  
Xiu Cheng Li ◽  
Ying Chao Pei

The MMS-200 thermal simulation testing machine was used to study the static softening behavior of low carbon high niobium microalloyed steel. The effect of niobium to the static recrystallization softening behavior of the microalloy steel had been analyzed by establishing the kinetics model of static recrystallization and the micro-morphology of precipitates. The results indicated that: the static softening behavior of the tested steel significantly influenced by the deformation temperature and the interval pass time of the rolling processing. At relatively high deformation temperature and long interval pass time, the ratio of static softening was increased. Then the deformation temperature was lower to 950°C, and the static softening behavior of the test steel was ceased. But when the deformation temperature was higher than 1000°C, the static softening behavior of the test steel completely occurred. The activation energy of the test steel was 325·mol-1 by the established model calculated.


Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1455 ◽  
Author(s):  
Qiumei Yang ◽  
Yajun Zhou ◽  
Zheng Li ◽  
Daheng Mao

Hot deformation experiments of as-cast 35CrMoV steel, with strain rates of 0.01 s−1 and 10 s−1, deformation temperatures of 850, 950, and 1050 °C, and an extreme deformation reaching 50%, were carried out using a Gleeble-3810 thermal simulator. Electrochemical corrosion experiments were conducted on the deformed specimens. The microstructure was observed by optical microscope (OM), and the corrosion morphology and corrosion products of the specimens were investigated by scanning electron microscopy (SEM), energy disperse spectroscopy (EDS), confocal laser scanning microscopy (CLSM), and X-ray diffraction (XRD) techniques. The results show that the grain size increased gradually with an increase in the deformation temperature at the same strain rate, whereas the corrosion resistance deteriorated. At the same deformation temperature, the grain size becomes smaller as the strain rate increases, which enhances the corrosion resistance. This is mainly attributed to the fine grains, which can form more grain boundaries, increase the grain boundary area, and accelerate the formation of the inner rust layer at the beginning of corrosion. Moreover, fine grains can also refine the rust particles and enhance the bonding strength between the inner rust layer and the matrix. The denseness and stability of the inner rust layer increases as the corrosion process progresses, thereby improving corrosion resistance.


2017 ◽  
Vol 898 ◽  
pp. 137-143
Author(s):  
Lin Xiang ◽  
Bin Tang ◽  
Hong Chao Kou ◽  
Jie Shao ◽  
Jin Shan Li

Isothermal compression tests were conducted to investigate the effect of hot deformation parameters on flow behavior and microstructure of Ti-6Al-4V-0.2O alloy. The experimental results show that the strain rate and height reduction have little effect on the volume fraction of primary α at a deformation temperature of 860 ̊C. At a deformation temperature of 940 ̊C, the volume fraction of primary α at a high strain rate (10s-1) is about 10% less than that at low strain rates (0.01s-1~1s-1). It may be one of the reasons for the significantly discontinuous yielding phenomenon. Another reason is that the dislocation density decreased suddenly due to the dynamic recovery. With the increasing strain rate and the decreasing deformation temperature, the volume fraction of irregular secondary α increases and lamellar secondary α decreases. And with height reduction increasing, the irregular secondary α increases firstly and then tends to be steady because of dynamic recovery and recrystallization.


2018 ◽  
Vol 228 ◽  
pp. 04006
Author(s):  
Jing Lu ◽  
Gaosheng Fu ◽  
Zhimeng Ren ◽  
Jie Liu ◽  
Huan Hao

The thermal deformation microstructure of continuous extrusion copper bus bar was observed and analyzed in the temperature range from 200°C to 700°C and at strain rate from 0.01s-1 to 10.0s-1 and at deformation amount from30% to 90% on Gleeble1500 test machine. The experiment results show that the higher the temperature, the lower the strain rate, the more dynamic recrystallization occurred. At the same strain rate, the copper bus bar changes from raw material of as-cast organization to recrystallization grain gradually as the deformation temperature and deformation degree increase, and the recrystallization grain size grows older with the rise of temperature. At the same deformation temperature, the temperature of recrystallization nucleation decreases while the strain rate increases. At low strain rate (0.01~1.0s-1), the dynamic recrystallization occurred at 500°C. While at high strain rate (10.0s-1), the recrystallization nucleation is advanced and it is already completed at 500°C. The Z parameters can be used to express the effect of deformation temperature and strain rate on the average grain size D, and the prediction model of the thermal deformation microstructure is obtained as follows: lnD=4.822-0.018lnZ


2018 ◽  
Vol 37 (7) ◽  
pp. 635-647 ◽  
Author(s):  
Le Li ◽  
Li-yong Wang

AbstractIn order to study dynamic recrystallization behavior of the as-extruded 3Cr20Ni10W2 under isothermal compression conditions, a cellular automaton (CA) model was applied to simulate hot compression. Analysis on the strain–stress curves indicates that dynamic recrystallization is the main softening mechanism for the 3Cr20Ni10W2 when the deformation occurred in the temperature range of 1203–1303 K with an interval of 50 K and strain rate range of 0.01–10 s−1. The deformation temperature and strain rate have a significant influence on the dynamically recrystallized grain size. Subsequently, a CA model is established to simulate the dynamic recrystallization behaviors of the studied alloy. The simulated results show that the mean grain size increases with the increased deformation temperature and decreases with the increased strain rate, which is consistent with the experimental result. In addition, the average absolute relative error, which is 13.14%, indicates that the process of the dynamic recrystallization and the dynamically recrystallized grain size can be well predicted by the present CA model.


2010 ◽  
Vol 650 ◽  
pp. 186-192
Author(s):  
Q.J. Yu ◽  
Wen Ru Sun ◽  
M. Cai ◽  
X.J. Wu ◽  
Shou Ren Guo ◽  
...  

The hot deformation behavior and microstructure of rolled Inconel 625 alloy have been studied from 930°C to 1180°C, and at strain rate from 10 s-1 to 80 s-1, respectively. The results indicate that, as deformation temperature rises, both peak flow stress (PFS) and recrystallization critical strain (RCS) decrease; as the strain rate increases, the PFS is enhanced, but the RCS drops. When the deformation temperature is within 1100°C and 1180°C, the grain size coarsens markedly with the temperature increasing. When the deformation temperature is lower than 1100°C,a higher strain rate is helpful for grain refinement. However, when the temperature is beyond 1100°C,the effect of strain rate on the grain size is reduced.


Sign in / Sign up

Export Citation Format

Share Document