Competitive effect between roughness and mask pattern on charging phenomena during plasma etching

Author(s):  
Peng Zhang ◽  
Ruvarashe Dambire

Abstract In plasma etching process, the edge roughness and mask pattern usually play a significant role in the deformation of holes under the influence of charging effect. The competitive effect between these two factors has been investigated, focusing on the surface charging in a hexagonal array, with various values of roughness parameters (amplitude (A) and wavelength (W)) and distances between holes (L). A series of classical particle dynamic simulations of surface charging, surface etching and profile evolution were used to investigate the effect of roughness and pattern on charging. This study showed that various roughness and patterns (represented by different values of L) can significantly influence surface distributions of the electric-field (E-field) and the etching rates on the mask surface. The simulations also showed that (1) the shape of the pattern array influences the mask hole profile during etching process, i.e. a hexagonal array pattern tends to deform the profile of a circular mask hole into a hexagonal hole; (2) pattern roughness is aggravated during etching process. These factors were found to be significant only at a small feature pitch and may be ignored at a large feature pitch. Possible mechanisms of these results during etching process are discussed. This work sheds light on the ways to maintain pattern integrity and further improve the quality of the pattern transfer onto the substrate.

Author(s):  
Hugo S. Alvarez ◽  
Frederico H. Cioldin ◽  
Audrey R. Silva ◽  
Luana C. J. Espinola ◽  
Alfredo R. Vaz ◽  
...  

1999 ◽  
Vol 28 (4) ◽  
pp. 347-354 ◽  
Author(s):  
C. R. Eddy ◽  
D. Leonhardt ◽  
V. A. Shamamian ◽  
J. R. Meyer ◽  
C. A. Hoffman ◽  
...  

2008 ◽  
Vol 53 (9(4)) ◽  
pp. 2270-2274
Author(s):  
Luqi Yuan ◽  
Xiaoxia Zhong ◽  
Xiaochen Wu ◽  
Qiwei Shu ◽  
Yuxing Xia

1999 ◽  
Vol 4 (S1) ◽  
pp. 902-913 ◽  
Author(s):  
Charles R. Eddy

As III-V nitride devices advance in technological importance, a fundamental understanding of device processing techniques becomes essential. Recent works have exposed various aspects of etch processes. The most recent advances and the greatest remaining challenges in the etching of GaN, AlN, and InN are reviewed. A more detailed presentation is given with respect to GaN high density plasma etching. In particular, the results of parametric and fundamental studies of GaN etching in a high density plasma are described. The effect of ion energy and mass on surface electronic properties is reported. Experimental results identify preferential sputtering as the leading cause of observed surface non-stoichiometry. This mechanism provides excellent surfaces for ohmic contacts to n-type GaN, but presents a major obstacle for Schottky contacts or ohmic contacts to p-type GaN. Chlorine-based discharges minimize this stoichiometry problem by improving the rate of gallium removal from the surface. In an effort to better understand the high density plasma etching process for GaN, in-situ mass spectrometry is employed to study the chlorine-based high density plasma etching process. Gallium chloride mass peaks were monitored in a highly surface sensitive geometry as a function of microwave power (ion flux), total pressure (neutral flux), and ion energy. Microwave power and pressure dependencies clearly demonstrate the importance of reactive ions in the etching of wide band gap materials. The ion energy dependence demonstrates the importance of adequate ion energy to promote a reasonable etch rate (≥100-150 eV). The benefits of ion-assisted chemical etching are diminished for ion energies in excess of 350 V, placing an upper limit to the useful ion energy range for etching GaN. The impact of these results on device processing will be discussed and future needs identified.


2007 ◽  
Vol 515 (12) ◽  
pp. 4892-4896 ◽  
Author(s):  
Gwan-Ha Kim ◽  
Young-Rog Kang ◽  
Whan-Jun Kim ◽  
Sang-Yong Kim ◽  
Chang-Il Kim

Sign in / Sign up

Export Citation Format

Share Document