scholarly journals Experimental demonstration of efficient high-dimensional quantum gates with orbital angular momentum

Author(s):  
Yunlong Wang ◽  
Shihao Ru ◽  
Feiran Wang ◽  
Pei Zhang ◽  
Fu-Li Li

Abstract Quantum gates are essential for the realization of quantum computer and have been implemented in various types of two-level systems. However, high-dimensional quantum gates are rarely investigated both theoretically and experimentally even that high-dimensional quantum systems exhibit remarkable advantages over two-level systems for some quantum information and quantum computing tasks. Here we experimentally demonstrate the four-dimensional X gate and its unique higher orders with the average conversion efficiency 93\%. All these gates are based on orbital-angular-momentum degree of freedom of single photons. Besides, a set of controlled quantum gates is implemented by use of polarization degree of freedom. Our work is an important step towards the goal of achieving arbitrary high-dimensional quantum circuit and paves a way for the implementation of high-dimensional quantum communication and computation.

2022 ◽  
Author(s):  
Shan Zhang ◽  
Xue Feng ◽  
Wei Zhang ◽  
Kaiyu Cui ◽  
Fang Liu ◽  
...  

Abstract In quantum optics, orbital angular momentum (OAM) is very promising to achieve high-dimensional quantum states due to the nature of infinite and discrete eigenvalues, which is quantized by the topological charge of l. Here, a heralded single-photon source with switchable OAM modes is proposed and demonstrated on silicon chip. At room-temperature, the heralded single photons with 11 OAM modes (l=2~6, -6~-1) have been successfully generated and switched through thermo-optical effect. We believe that such an integrated quantum source with multiple OAM modes and operating at room-temperature would provide a practical platform for high-dimensional quantum information processing. Moreover, our proposed architecture can also be extended to other material systems to further improve the performance of OAM quantum source.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Zhongzheng Gu ◽  
Da Yin ◽  
Fengyan Gu ◽  
Yanran Zhang ◽  
Shouping Nie ◽  
...  

Abstract We theoretically propose and experimentally verify a method to generate new polycyclic beams, namely concentric perfect Poincaré beams (CPPBs), by using an encoded annular phase mask. The proposed beams consisting of multiple polarization structured fields can be simultaneously generated in one concentric mode, which are respectively mapped by fundamental Poincaré sphere (PS), high-order Poincaré sphere (HOPS), and hybrid-order Poincaré sphere (HyPS). Moreover, the ring radius, numbers and polarization orders of the CPPBs at arbitrary positions on arbitrary PS are independently controlled. This work enriches the mode distributions of perfect vortex and introduces a new polarization degree of freedom, which has the potential to implement more information beyond the orbital angular momentum multiplexing in optical communication.


Nanoscale ◽  
2016 ◽  
Vol 8 (4) ◽  
pp. 2227-2233 ◽  
Author(s):  
Shengtao Mei ◽  
Kun Huang ◽  
Hong Liu ◽  
Fei Qin ◽  
Muhammad Q. Mehmood ◽  
...  

The orbital angular momentum (OAM) of light can be taken as an independent and orthogonal degree of freedom for multiplexing in an optical communication system, potentially improving the system capacity to hundreds of Tbits per second.


2015 ◽  
Vol 111 (1/2) ◽  
pp. 1-9 ◽  
Author(s):  
Melanie G. McLaren ◽  
Filippus S. Roux ◽  
Andrew Forbes

2006 ◽  
Vol 76 (5) ◽  
pp. 753-759 ◽  
Author(s):  
X. F Ren ◽  
G. P Guo ◽  
Y. F Huang ◽  
C. F Li ◽  
G. C Guo

Proceedings ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 7
Author(s):  
Adriana Pecoraro ◽  
Filippo Cardano ◽  
Lorenzo Marrucci ◽  
Alberto Porzio

Orbital angular momentum is a discrete degree of freedom that can access an infinite dimensional Hilbert space, thus enhancing the information capacity of a single optical beam. Continuous variables field quadratures allow achieving some quantum tasks in a more advantageous way with respect to the use of photon-number states. Here, we use a hybrid approach realizing bipartite continuous-variable Gaussian entangled state made up of two electromagnetic modes carrying orbital angular momentum. A q-plate is used for endowing a pair of entangled beams with such a degree of freedom. This quantum state is then completely characterized thanks to a novel design of a homodyne detector in which also the local oscillator is an orbital angular momentum-carrying beams so allowing the direct detection of vortex modes quadratures.


2015 ◽  
Vol 2015 ◽  
pp. 1-7
Author(s):  
Peilin Zhang ◽  
Sheng Li ◽  
Yu Zhou

We present an algorithm of quantum restricted Boltzmann machine network based on quantum gates. The algorithm is used to initialize the procedure that adjusts the qubit and weights. After adjusting, the network forms an unsupervised generative model that gives better classification performance than other discriminative models. In addition, we show how the algorithm can be constructed with quantum circuit for quantum computer.


Sign in / Sign up

Export Citation Format

Share Document