scholarly journals Nitrogen use efficiency trends for sustainable crop productivity in Lake Victoria basin: smallholder farmers’ perspectives on nitrogen cycling

Author(s):  
Winnie Ntinyari ◽  
Joseph P Gweyi-Onyango ◽  
Mekonnen Giweta ◽  
Besnon Mochoge ◽  
James Mutegi ◽  
...  

Abstract Nitrogen Use Efficiency (NUE) is one of the established metrics for benchmarking management of Nitrogen (N) in various systems. Numerous approaches to calculate NUE exist, making it difficult to compare the performances of systems depending on the methodology used. This study adopted the conceptualized framework by European Union Nitrogen Expert Panel (EUNEP) to calculate NUE values for cereal crops to determine future trends for the first time in the Lake Victoria region. Data were collected through in-person interviews among maize and rice smallholder farmers within the Lake Victoria region. A total of 295 observations were recorded. Collected data on yield and N fertilizer were used to make projections on the changes of NUE based on scientific and policy recommendations for Sub-Saharan Africa for 2020 (base year), 2025, 2030, and 2050. Significant differences in maize grain yield for both fertilized and unfertilized farms were observed with very low yields of 2.4 t ha-1 (fertilized) and 1.4 tha-1 (unfertilized). The graphical representation of NUE of both maize and rice showed that most farmers were in the zone of soil N mining. Projected results showed that most maize farmers within Lake Victoria region will continue to experience NUE values >90%, low N inputs <50 kg N ha-1) and less than 5 t ha-1 maize crop yield over the years. For rice farmers, Nyando and Nzoia catchments had surpassed the set target of both yield (6 t ha-1) and N input (50 kg N ha-1). However, NUE values remain higher than the optimal ranges of 50-90% (127.14% -267.57%), indicating risks of depleting soil N status. The unbalanced N fertilization also showed a trend below the linear neutrality option and the average N output for good N management for both crops. Therefore, farmers need to explore various crop management options that could increase N use efficiencies. This should be coupled with policies that promote farmers to access more N input and advocate for optimal management of N and improved quality of the cereals

2004 ◽  
Vol 84 (2) ◽  
pp. 169-176 ◽  
Author(s):  
B. L. Ma ◽  
M. Li ◽  
L. M. Dwyer ◽  
G. Stewart

Little information is available comparing agronomic performance and nitrogen use efficiency (NUE) for N application methods such as foliar spray, soil application, and ear injection in maize (Zea mays L.). The objective of this study was to investigate the effects of various N application methods on total stover dry matter, grain yield, and NUE of maize hybrids using a 15N-labeling approach. A field experiment was conducted on a Dalhousie clay loam in Ottawa and a Guelph loam in Guelph for 2 yr (1999 and 2000). Three N application methods were tested on two maize hybrids, Pioneer 3893 and Pioneer 38P06 Bt. At planting, 60 kg N ha-1 as ammonium nitrate was applied to all treatments. In addition, 6.5 kg N ha-1 and 13.5 kg N ha-1 as 15N-labeled urea were applied to either foliage (Treatment I) or soil (Treatment II) at V6 and V12 stages, respectively. In Treatment III, 20 kg N ha-1 as 15N-labeled urea was injected into space between ear and husks at silking. The results showed that compared with soil N application neither foliar spray nor injection through ear affected grain yield or stover dry matter. The NUE values ranged from 12 to 76% for N fertilizer applied at V6 a nd V12 stages, or at silking for all treatments. There was no interaction of hybrid × N application methods on any variables measured with the only exception that for soil N application, grain NUE in Pioneer 38P06 Bt was significant higher than in Pioneer 3893. The difference in total N and NUE of grain and stover between soil N application and foliar N spray was inconsistent. However, NUE was substantially higher for N injection through the ear than for foliar or soil application without differential responses between the two hybrids. Nitrogen injection through the ear at silking might have altered N redistribution within the plant and improved NUE. Hence, it can potentially enhance grain protein content. Foliar N spray is not advocated for maize production in Ontario. Key words: Maize, Zea mays, nitrogen application methods, nitrogen-15, yield, nitrogen use efficiency


Plants ◽  
2020 ◽  
Vol 9 (10) ◽  
pp. 1309 ◽  
Author(s):  
Gilles Lemaire ◽  
Ignacio Ciampitti

Due to the asymptotic nature of the crop yield response curve to fertilizer N supply, the nitrogen use efficiency (NUE, yield per unit of fertilizer applied) of crops declines as the crop N nutrition becomes less limiting. Therefore, it is difficult to directly compare the NUE of crops according to genotype-by-environment-by-management interactions in the absence of any indication of crop N status. The determination of the nitrogen nutrition index (NNI) allows the estimation of crop N status independently of the N fertilizer application rate. Moreover, the theory of N dilution in crops indicates clearly that crop N uptake is coregulated by (i) soil N availability and (ii) plant growth rate capacity. Thus, according to genotype-by-environment-by-management interactions leading to variation in potential plant growth capacity, N demand for a given soil N supply condition would be different; consequently, the NUE of the crop would be dissimilar. We demonstrate that NUE depends on the crop potential growth rate and N status defined by the crop NNI. Thus, providing proper context to NUE changes needs to be achieved by considering comparisons with similar crop mass and NNI to avoid any misinterpretation. The latter needs to be considered not only when analyzing genotype-by-environment-by-management interactions for NUE but for other resource use efficiency inputs such as water use efficiency (colimitation N–water) under field conditions.


2018 ◽  
Vol 7 (4) ◽  
pp. 42
Author(s):  
Simunji Simunji ◽  
Kalaluka L. Munyinda ◽  
Obed I. Lungu ◽  
Alice M. Mweetwa ◽  
Elijah Phiri

In Zambia, small holder farmers depend on producing maize (Zea mays), which is a major staple food for many Zambians. Maize productivity among the smallholder farmers is quite low, giving only 2.3 tons per hectare. The low yields are attributed to insufficient and erratic rain fall, low soil fertility, and poor farming practices. Therefore, the objective of this study was to evaluate the performance of maize genotypes for nitrogen use efficiency and soil moisture utilisation under conservation farming system. The trials were carried out at two sites with different soil types. Three maize varieties i.e. ZMS 606, GV 640 and GV 635 were evaluated in maize – cowpea rotation. Four cowpea varieties used for rotation with maize, i.e. Bubebe Lutembwe, BB 14-16-2-2 and LT 11-3-3-12. BB 14-16-2-2 and LT 11-3-3-12 are mutation-derived lines of Bubebe and Lutembwe cowpea parent varieties respectively. The experimental design used was split plot with three replications. The NUE was significantly (P&lt; 0.05) higher in CF and accounted for 27 % and 15% more than conventional farming system which valued 17% and 3% at Chisamba and Batoka, respectively. while soil moisture content was higher at Batoka than Chisamba in CF system. ZMS 606 and GV 640 varieties were superior over GV 635 for NUE. Cowpea variety BB 14-16-2-2 significantly increased NUE of maize varieties. Therefore, smallholder farmers in Zambia can increase maize productivity in maize - cowpea rotation system due to the increased NUE. Recommendations are made for farmers to select improved nitrogen efficient maize varieties to optimize productivity of maize in conservation farming system.


2009 ◽  
Vol 32 (12) ◽  
pp. 2107-2122 ◽  
Author(s):  
Daniel E. Edmonds ◽  
Silvano L. Abreu ◽  
Adelheid West ◽  
Donna R. Caasi ◽  
Travis O. Conley ◽  
...  

Author(s):  
Priscilla Osei Owusu ◽  
Joseph Ofori ◽  
Christiana Amoatey ◽  
Dominic Kwadwo Anning

There is a spiral increase in maize consumption in Ghana due to high population growth and changing consumer preferences. However, maize yield in the country is declining partly due to poor soil fertility and fertilizer management, resulting in low nitrogen use efficiency. A field experiment was therefore conducted at the Soil and Irrigation Research Centre, University of Ghana, Kpong during the 2016 cropping season to evaluate the effect of nitrogen management options on growth, yield and nitrogen use efficiency of maize. The experiment was laid out in a split plot design with three replicates. Variety and nitrogen (N) management were the main and sub plot factors, respectively. The varieties were; 1. Aburohemaa (V1) 2. Abontem (V2) 3. Obaatanpa (V3). 4. Omankwa (V4), while the nitrogen management levels included; 1. no N application (control, N0), 2. Conventional practice, Conv (150 kg N ha-1) 3. Leaf Colour Chart, LCC (75 kg N ha-1) and 4. Soil Plant Analysis Development meter, SPAD (75 kg N ha-1). The results revealed that LCC and SPAD meter in maize nitrogen-based management reduced nitrogen fertilizer input by 50% without significantly affecting the growth, grain yield and nitrogen use efficiency of maize. Maize varieties significantly differed in terms of growth rate, yielding potential, N uptake and N use efficiency. The study recommended LCC to maize farmers since it is relatively cheap, easy to use and saved 50% N fertilizer input.


2021 ◽  
Vol 12 ◽  
Author(s):  
Vijayalakshmi Pujarula ◽  
Madhu Pusuluri ◽  
Srikanth Bollam ◽  
Roma Rani Das ◽  
Rambabu Ratnala ◽  
...  

Nitrogen (N) is one of the primary macronutrients required for crop growth and yield. This nutrient is especially limiting in the dry and low fertility soils where pearl millet [Pennisetum glaucum (L.) R. Br] is typically grown. Globally, pearl millet is the sixth most important cereal grown by subsistence farmers in the arid and semi-arid regions of sub-Saharan Africa and the Indian subcontinent. Most of these agro-ecologies have low N in the root zone soil strata. Therefore, there is an immense need to identify lines that use nitrogen efficiently. A set of 380 diverse pearl millet lines consisting of a global diversity panel (345), parents of mapping populations (20), and standard checks (15) were evaluated in an alpha-lattice design with two replications, 25 blocks, a three-row plot for 11 nitrogen use efficiency (NUE) related traits across three growing seasons (Summer 2017, Rainy 2017, and Summer 2018) in an N-depleted precision field under three different N levels (0%-N0, 50%-N50, 100%-N100 of recommended N, i.e., 100 kg ha–1). Analysis of variance revealed significant genetic variation for NUE-related traits across treatments and seasons. Nitrogen in limited condition (N0) resulted in a 27.6 and 17.6% reduction in grain yield (GY) and dry stover yield (DSY) compared to N50. Higher reduction in GY and DSY traits by 24.6 and 23.6% were observed under N0 compared to N100. Among the assessed traits, GY exhibited significant positive correlations with nitrogen utilization efficiency (NUtE) and nitrogen harvest index (NHI). This indicated the pivotal role of N remobilization to the grain in enhancing yield levels. Top 25 N-insensitive (NIS-top grain yielders) and N-sensitive (NS-poor grain yielders) genotypes were identified under low N conditions. Out of 25 NIS lines, nine genotypes (IP 10820, IP 17720, ICMB 01222-P1, IP 10379, ICMB 89111-P2, IP 8069, ICMB 90111-P2, ICMV IS89305, and ICMV 221) were common with the top 25 lines for N100 level showing the genotype plasticity toward varying N levels. Low N tolerant genotypes identified from the current investigation may help in the identification of genomic regions responsible for NUE and its deployment in pearl millet breeding programs through marker-assisted selection (MAS).


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2364
Author(s):  
Shanay T. Williams ◽  
Sally Vail ◽  
Melissa M. Arcand

Improving nitrogen use efficiency (NUE) is essential for sustainable agriculture, especially in high-N-demanding crops such as canola (Brassica napus). While advancements in above-ground agronomic practices have improved NUE, research on soil and below-ground processes are limited. Plant NUE—and its components, N uptake efficiency (NUpE), and N utilization efficiency (NUtE)—can be further improved by exploring crop variety and soil N cycling. Canola parental genotypes (NAM-0 and NAM-17) and hybrids (H151857 and H151816) were grown on a dark brown chernozem in Saskatchewan, Canada. Soil and plant samples were collected at the 5–6 leaf stage and flowering, and seeds were collected at harvest maturity. Soil N cycling varied with phenotypic stage, with higher potential ammonium oxidation rates at the 5–6 leaf stage and higher urease activity at flowering. Seed N uptake was higher under higher urea-N rates, while the converse was true for NUE metrics. Hybrids had higher yield, seed N uptake, NUtE, and NUE, with higher NUE potentially owing to higher NUtE at flowering, which led to higher yield and seed N allocation. Soil N cycling and soil N concentrations correlated for improved canola NUE, revealing below-ground breeding targets. Future studies should consider multiple root characteristics, including rhizosphere microbial N cycling, root exudates, and root system architecture, to determine the below-ground dynamics of plant NUE.


2001 ◽  
Vol 31 (11) ◽  
pp. 2014-2025 ◽  
Author(s):  
Darren E Robinson ◽  
Robert G Wagner ◽  
F Wayne Bell ◽  
Clarence J Swanton

The objective of this study was to understand the mechanism underlying nitrogen (N) and water competition between jack pine (Pinus banksiana Lamb.) and four boreal forest species. Large-leaved aster (Aster macrophyllus L.), Canada blue-joint grass (Calamagrostis canadensis (Michx.) Beauv.), trembling aspen (Populus tremuloides (Michx.), and red raspberry (Rubus idaeus L.) were planted at a range of densities (0-8 plants/m2) with jack pine seedlings. Net photosynthesis (Pn), nitrogen-use efficiency (NUE), water-use efficiency (WUE) of each species were monitored over three consecutive growing seasons. Changes in available soil N and water were also measured. Jack pine Pn, NUE, and WUE decreased as competitor density increased, but these effects varied among species (p < 0.001) and over time (p < 0.001). The influence of density on jack pine Pn decreased over time for aster and blue-joint grass and increased over time for aspen and raspberry (p < 0.001). At most sample times, jack pine Pn correlated with available soil N. In contrast, the correlation between jack pine Pn and soil water was rarely significant.


Author(s):  
Lucie Chmelíková ◽  
Harald Schmid ◽  
Sandra Anke ◽  
Kurt-Jürgen Hülsbergen

AbstractOptimising nitrogen (N) management improves soil fertility and reduces negative environmental impacts. Mineral N fertilizers are of key importance in intensive conventional farming (CF). In contrast, organic farming (OF) is highly dependent on closed nutrient cycles, biological N fixation and crop rotations. However, both systems need to minimise N balances and maximise nitrogen-use efficiency (NUE). NUE of organic and conventional crop production systems was evaluated in three regions in Germany by analysing N input, N output and N balance of 30 pairs of one OF and one CF farm each from the network of pilot farms for the period 2009–2011; indicators were calculated using the farm management system REPRO. CF had higher N input in all farm pairs. In 90% of the comparisons, N output of CF was higher than OF, in 7% it was the same and in 3% lower. NUE was higher in 60% of the OF, the same in 37% and lower in only 3%. The NUE of crop production in OF was 91% (arable farms: 83%; mixed/dairy farms: 95%) and the NUE in CF was 79% (arable farms: 77%; dairy farms: 80%). N balance was lower in 90% of the OF. The yearly average N balance was four times higher in CF (59 kg N ha−1 a−1) than in OF (15 kg N ha−1 a−1). The results show a huge individual variability within OF and CF. Organic mixed/dairy farms had the lowest N balances and the highest NUE. A further expansion of OF area can help to reduce high N balances and increase the NUE of crop production.


2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Felix Satognon ◽  
Seth F. O. Owido ◽  
Joyce J. Lelei

Abstract Background Low soil fertility and reduced seasonal rainfall contribute to low potato (Solanum tuberosum L.) yield in Kenya. Nitrogen (N) deficiency is the major problem facing by the smallholder farmers of Kenya due to lack of fallow. Hence an introduction of supplemental irrigation with an adequate application of this nutrient could increase potato yield. The objective of this study was to determine the effects of supplemental irrigation and N-fertilisation on potato tuber yield, water use efficiency (WUE) and nitrogen use efficiency (NUE). The experiment was conducted in Nakuru County, Kenya for two seasons. The experimental soils are classified as mollic Andosols. The treatments comprised two irrigation treatments of full supplemental irrigation (FI) and rainfed production (RF) and four N levels of four N levels of 0 (N0), 60 (N1), 90 (N2) and 130 kg N/ha (N3). Results The results showed that total tuber yield, marketable tuber yield and NUE were significantly (P < 0.001) affected by irrigation × N-fertilisation while WUE was only affected (P < 0.001) by N-fertilisation. The highest total tuber yield, 58.28 tonnes/hectare (t/ha), was recorded under FI combined with N3. Treatment FI significantly increased marketable tuber yield by approximately 125.58% in all N treatments compared to RF. The highest NUE of potato (236.44 kg/kg of N) was obtained under FI combined with N3 but not significantly different from the NUE of potato obtained under FI with N2. N-fertilisation N3 produced the highest WUE of 14.24 kg/m3. Significant correlation was obtained between tuber yield and number of tubers/plant (r = 0.75, P < 0.001), NUE (r = 0.95, P < 0.001) and WUE (r = 0.72, P < 0.001). Conclusion High potato yield and marketable tuber yield can be achieved in mollic Andosols when water deficits of the growing season are eliminated with supplemental irrigation and an application of 130 kg N/ha.


Sign in / Sign up

Export Citation Format

Share Document