scholarly journals Nitrogen Use Efficiency in Parent vs. Hybrid Canola under Varying Nitrogen Availabilities

Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2364
Author(s):  
Shanay T. Williams ◽  
Sally Vail ◽  
Melissa M. Arcand

Improving nitrogen use efficiency (NUE) is essential for sustainable agriculture, especially in high-N-demanding crops such as canola (Brassica napus). While advancements in above-ground agronomic practices have improved NUE, research on soil and below-ground processes are limited. Plant NUE—and its components, N uptake efficiency (NUpE), and N utilization efficiency (NUtE)—can be further improved by exploring crop variety and soil N cycling. Canola parental genotypes (NAM-0 and NAM-17) and hybrids (H151857 and H151816) were grown on a dark brown chernozem in Saskatchewan, Canada. Soil and plant samples were collected at the 5–6 leaf stage and flowering, and seeds were collected at harvest maturity. Soil N cycling varied with phenotypic stage, with higher potential ammonium oxidation rates at the 5–6 leaf stage and higher urease activity at flowering. Seed N uptake was higher under higher urea-N rates, while the converse was true for NUE metrics. Hybrids had higher yield, seed N uptake, NUtE, and NUE, with higher NUE potentially owing to higher NUtE at flowering, which led to higher yield and seed N allocation. Soil N cycling and soil N concentrations correlated for improved canola NUE, revealing below-ground breeding targets. Future studies should consider multiple root characteristics, including rhizosphere microbial N cycling, root exudates, and root system architecture, to determine the below-ground dynamics of plant NUE.

Author(s):  
A.K. Dhaka ◽  
Satish Kumar ◽  
Bhagat Singh ◽  
Karmal Singh ◽  
Amit Kumar ◽  
...  

An experiment was conducted to study nitrogen use efficiency in pigeonpea at Research farm, CCS Haryana Agricultural University, Hisar, India having three nipping treatments (no nipping, nipping at just start of branching and nipping at flower initiation) and five fertility levels (control, 20 kg N + 40 kg P2O5/ha, 30 kg N + 40 kg P2O5 /ha, 40 kg N + 40 kg P2O5/ha and 20 kg N + 40 kg P2O5/ha + foliar spray of 2% N immediately after nipping) replicated thrice in split plot design during growing seasons of 2016 and 2017. Nipping at start of branching reduced the plant height, while increased primary and secondary branches, pods/plant and yield over no nipping. Significantly higher total N uptake, protein content, net return, B: C, agronomical NUE, physiologic NUE, agro-physiologic NUE, apparent recovery efficiency, utilization efficiency of N and partial N balance were improved with nipping at start of branching. Among fertility levels, 40 kg N + 40 kg P2O5 / ha recorded significantly higher yield attributes with 39.7 per cent higher seed yield over control. Significantly higher agronomic NUE, physiologic NUE, agro-physiological NUE, apparent recovery efficiency, utilization efficiency of N, partial N balance and NER were recorded with 20 kg/ha as compared to higher nitrogen doses.


2007 ◽  
Vol 55 (3) ◽  
pp. 383-391 ◽  
Author(s):  
M. Venugopalan ◽  
K. Hebbar ◽  
P. Tiwary ◽  
S. Chatterji ◽  
V. Ramamurthy ◽  
...  

A field experiment was conducted under rainfed conditions, on a shallow soil (Inceptisol) underlain with weathered basalt and on a deep soil (Vertisol) to evaluate three cotton cultivars [AKH 4 ( Gossypium arboreum ), LRK 516 ( G. hirsutum ) and NHH 44 (intra- hirsutum hybrid)] under four levels of N (0, 40, 80 and 120 kg ha −1 ) and to analyse the variations in productivity using the nitrogen use efficiency (NUE) parameter. The yield of AKH4 and NHH 44 was 101 and 89% higher than that of LRK 516. The yield and the response to N were higher on the Inceptisol. The enhanced yield and NUE of AKH 4 and NHH 44 were attributed to the improved efficiency of N uptake utilization. NUE declined from 21.6 at 40 kg ha −1 to 7.7 at 120 kg N ha −1 . The N uptake efficiency and N utilization efficiency were independent of each other, but complemented each other in improving NUE. The implications of variations in NUE, N uptake efficiency and N utilization efficiency and their components, N biomass production efficiency and HI, in cotton breeding and agronomy are also discussed.


Plants ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 217
Author(s):  
Anamaria Mălinaş ◽  
Roxana Vidican ◽  
Ioan Rotar ◽  
Cristian Mălinaş ◽  
Cristina Maria Moldovan ◽  
...  

Although essential for achieving high crop yields required for the growing population worldwide, nitrogen, (N) in large amounts, along with its inefficient use, results in environmental pollution and increased greenhouse gas (GHG) emissions. Therefore, improved nitrogen use efficiency (NUE) has a significant role to play in the development of more sustainable crop production systems. Considering that wheat is one of the major crops cultivated in the world and contributes in high amounts to the large N footprint, designing sustainable wheat crop patterns, briefly defined by us in this review as the 3 Qs (high quantity, good quality and the quintessence of natural environment health) is urgently required. There are numerous indices used to benchmark N management for a specific crop, including wheat, but the misunderstanding of their specific functions could result in an under/overestimation of crop NUE. Thus, a better understanding of N dynamics in relation to wheat N cycling can enhance a higher efficiency of N use. In this sense, the aim of our review is to provide a critical analysis on the current knowledge with respect to wheat NUE. Further, considering the key traits involved in N uptake, assimilation, distribution and utilization efficiency, as well as genetics (G), environment (E) and management (M) interactions, we suggest a series of future perspectives that can enhance a better efficiency of N in wheat.


Agronomy ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 259 ◽  
Author(s):  
Muhammad Azher Nawaz ◽  
Xiaojie Han ◽  
Chen Chen ◽  
Zuhua Zheng ◽  
Fareeha Shireen ◽  
...  

Nitrogen availability is the key determinant of plant growth and development. The improvement of nitrogen use efficiency (NUE) in crops is an important consideration. In fruit and vegetables, such as watermelon, rootstocks are often utilized to control soil borne diseases and improve plant performance to a range of abiotic stresses. In this study, we evaluated the efficacy of 10 wild watermelon rootstocks (ZXG-516, ZXG-941, ZXG-945, ZXG-1250, ZXG-1251, ZXG-1558, ZXG-944, ZXG-1469, ZXG-1463, and ZXG-952) to improve the plant growth and nitrogen use efficiency (NUE) of the watermelon cultivar: Zaojia 8424. Nitrogen use efficiency (NUE) is a comprehensive parameter that represents the ability of a plant to absorb nitrogen (N) and convert the supplied resources to the dry biomass. Wild watermelon rootstocks substantially improved plant growth, rate of photosynthesis, stomatal conductivity, intercellular carbon dioxide concentration, rate of transpiration, nitrogen uptake efficiency, nitrogen use efficiency, and nitrogen utilization efficiency of watermelon. NUE of watermelon grafted onto ZXG-945, ZXG-1250, and ZXG-941 was improved by up to 67%, 77%, and 168%, respectively, at optimum N supply. Similarly, at low N supply (0.2 mM), NUE of watermelon grafted onto ZXG-1558 and ZXG-516 was improved by up to 104% and 175%, respectively. In conclusion, grafting onto some wild rootstocks can improve nitrogen use efficiency of watermelon, and this improved nitrogen use efficiency could be attributed to better N uptake efficiency of wild watermelon rootstocks.


Agronomy ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 582 ◽  
Author(s):  
Anita Ierna ◽  
Giovanni Mauromicale

Nitrogen fertilization is indispensable to improving potato crop productivity, but there is a need to manage it suitably by looking at environmental sustainability. In a three-season experiment, we studied the effects of five nitrogen (N) fertilization rates: 0 (N0), 100 (N100), 200 (N200), 300 (N300) and 400 (N400) kg N ha−1 on crop N uptake, apparent nitrogen recovery efficiency (ANRE), tuber yield, nitrogen use efficiency (NUE), nitrogen uptake efficiency (NUpE), nitrogen utilization efficiency (NUtE) and agronomic nitrogen use efficiency (AgNUE) of five different potato cultivars: Daytona, Ninfa, Rubino, Sieglinde and Spunta. The economically optimum N fertilizer rates (EONFR) were also calculated. In seasons with high soil nitrogen availability for the crop (about 85 kg ha−1 of N), tuber yield increased only up to N100 and ANRE was about 50%; in seasons with medium (from 50 to 60 kg ha−1 of N) soil N availability, tuber yield increased up to N200 and ANRE was about 45%. Rubino and Sieglinde (early cultivars) responded for tuber yield only up to N100; Daytona, Ninfa, Spunta (late cultivars) up to N200, showing the highest values of NUE, NUpE, NUtE and AgNUE at N100. EONFR ranged from 176 to 268 kg ha−1 in relation to cultivar and season, but the reduction by 50% led to a tuber yield decrease of only around 16%. The adoption of cultivars characterized by high AgNUE at a low N rate and a soil nitrate test prior to planting, are effective tools to achieve a more sustainable and cost-effective nitrogen fertilization management.


Agronomy ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 572
Author(s):  
André B. Andrade ◽  
Douglas R. Guelfi ◽  
Valdemar Faquin ◽  
Fabrício S. Coelho ◽  
Carolina S. de C. Souza ◽  
...  

Knowing the nitrogen use efficiency (NUE) of crops is crucial to minimize environmental pollution, although NUE is rarely provided for numerous genotypes in the tobacco (Nicotiana tabacum L.) crop. Through the growth of contrasting genotypes in nutritive solutions, we aimed to characterize five NUE components of 28 genotypes and to classify them according to their efficiency and responsiveness to nitrogen (N) availability. On average, physiological N use efficiency, N harvest index, and N uptake efficiency decreased by 16%, 4%, and 57%, respectively, under N-deficient conditions, while N utilization efficiency decreased by 43% at adequate N supply. The relative efficiency of N use varied from 35% to 59% among genotypes. All genotypes of the Virginia and Maryland varietal groups were efficient, and those of the Burley, Comum, and Dark groups were inefficient, while the responsiveness varied among genotypes within varietal groups, except for Maryland genotypes. Our findings are helpful in indicating genotypes with distinguished efficiency and responsiveness to N supply, which can be further chosen according to soil N level or affordability to N fertilizers worldwide in tobacco crops. In a general framework, this can lead to a more sustainable use of N and can support tobacco breeding programs for NUE.


2021 ◽  
Vol 12 ◽  
Author(s):  
Kate A. Congreves ◽  
Olivia Otchere ◽  
Daphnée Ferland ◽  
Soudeh Farzadfar ◽  
Shanay Williams ◽  
...  

Crop production has a large impact on the nitrogen (N) cycle, with consequences to climate, environment, and public health. Designing better N management will require indicators that accurately reflect the complexities of N cycling and provide biological meaning. Nitrogen use efficiency (NUE) is an established metric used to benchmark N management. There are numerous approaches to calculate NUE, but it is difficult to find an authoritative resource that collates the various NUE indices and systematically identifies their assets and shortcomings. Furthermore, there is reason to question the usefulness of many traditional NUE formulations, and to consider factors to improve the conceptualization of NUE for future use. As a resource for agricultural researchers and students, here we present a comprehensive list of NUE indices and discuss their functions, strengths, and limitations. We also suggest several factors—which are currently ignored in traditional NUE indices—that will improve the conceptualization of NUE, such as: accounting for a wider range of soil N forms, considering how plants mediate their response to the soil N status, including the below-ground/root N pools, capturing the synchrony between available N and plant N demand, blending agronomic performance with ecosystem functioning, and affirming the biological meaning of NUE.


2004 ◽  
Vol 84 (2) ◽  
pp. 169-176 ◽  
Author(s):  
B. L. Ma ◽  
M. Li ◽  
L. M. Dwyer ◽  
G. Stewart

Little information is available comparing agronomic performance and nitrogen use efficiency (NUE) for N application methods such as foliar spray, soil application, and ear injection in maize (Zea mays L.). The objective of this study was to investigate the effects of various N application methods on total stover dry matter, grain yield, and NUE of maize hybrids using a 15N-labeling approach. A field experiment was conducted on a Dalhousie clay loam in Ottawa and a Guelph loam in Guelph for 2 yr (1999 and 2000). Three N application methods were tested on two maize hybrids, Pioneer 3893 and Pioneer 38P06 Bt. At planting, 60 kg N ha-1 as ammonium nitrate was applied to all treatments. In addition, 6.5 kg N ha-1 and 13.5 kg N ha-1 as 15N-labeled urea were applied to either foliage (Treatment I) or soil (Treatment II) at V6 and V12 stages, respectively. In Treatment III, 20 kg N ha-1 as 15N-labeled urea was injected into space between ear and husks at silking. The results showed that compared with soil N application neither foliar spray nor injection through ear affected grain yield or stover dry matter. The NUE values ranged from 12 to 76% for N fertilizer applied at V6 a nd V12 stages, or at silking for all treatments. There was no interaction of hybrid × N application methods on any variables measured with the only exception that for soil N application, grain NUE in Pioneer 38P06 Bt was significant higher than in Pioneer 3893. The difference in total N and NUE of grain and stover between soil N application and foliar N spray was inconsistent. However, NUE was substantially higher for N injection through the ear than for foliar or soil application without differential responses between the two hybrids. Nitrogen injection through the ear at silking might have altered N redistribution within the plant and improved NUE. Hence, it can potentially enhance grain protein content. Foliar N spray is not advocated for maize production in Ontario. Key words: Maize, Zea mays, nitrogen application methods, nitrogen-15, yield, nitrogen use efficiency


2018 ◽  
Vol 5 (3) ◽  
pp. 79-88
Author(s):  
Chairunnisak Chairunnisak ◽  
Sugiyanta Sugiyanta ◽  
Edi Santosa

Nitrogen use efficiency (NUE) is a necessitate in order to enhance sustainable rice farming in Indonesia. Thus, objective of present research was to evaluate NUE of local and national Indonesian superior aromatic rice treated with different levels of nitrogen fertilizer (N). Planting plot was arranged using five levels of N as the main plot, i.e; 0, 45, 90, 135 and 180 kg ha-1; and two rice varieties as subplot, i.e: Sigupai Abdya (local) and Inpari 23 Bantul (national). The results showed application 180 kg N ha-1 to Sigupai  Abdya significantly increased the plant height. However, it also postponed the flowering time. Inpari 23 Bantul treated with 180 kg N ha-1 produced the highest number of tillers. Combination of 90 kg N ha-1 with Sigupai Abdya variety significantly reduced the number of empty grains. Sigupai Abdya variety has a higher number of grains per panicle and sampling plot yield than Inpari 23 Bantul, and  dosage 90 kg N ha-1 increases grain yield per clump also sampling plot yield significantly. Nitrogen at 180 kg N ha-1 made Sigupai Abdya variety has high N content and absorption N in primordia phase, and the Inpari 23 Bantul variety had grain with high N content. Nitrogen at 90 kg ha-1 caused Sigupai Abdya variety at primordia phase had NUE higher than Inpari 23 Bantul. This study showed that local variety Sigupai Abdya is suitable for development as rice with low input NKeywords: Aceh aromatic, low input, nitrogen dose, N uptake, Oryza sativa L. 


2021 ◽  
Vol 23 (1) ◽  
pp. 50
Author(s):  
Wilda Lumban Tobing ◽  
Mariani Sembiring

<p>The expansion of oil palm plantations continues to increase so that it requires quality seed. Nurseries need to be done before moving to the field. The use of Azotobacter and cocoa fruit skin compost is one way to increase the  growth and nitrogen use efficiency in oil palm in main nursery. This research was aimed to know the growth and nitrogen use efficiency of palm oil in main nursery. This research was conducted on the research area of the Agricultural Agribusiness College of Agriculture Practices (STIPAP) Medan and the Laboratory of Balai Pengkajian Teknologi Pertanian (BPTP) of North Sumatra and the Agricultural Laboratory of the University of North Sumatera from February until Juli 2013. The method used was Randomized Group Design factorial with 3 replications and followed by Duncan test at α=5%. The first factor is Azotobacter including without giving Azotobacter (A0), 20 ml/polybag (A1) and 40 ml/polybag (A2). The second factor is cocoa fruit skin compost, which consists of 3 of them, namely without compost (K0), 125 g/polybag (K1), and 250 g/polybag (K2). The research parameters were plant dry weight (g), nitrogen uptake (mg) and N use efficiency (EPN). The results showed that the use of Azotobacter and cocoa fruit skin compost were able to significantly increasing dry weight of plant and N uptake of oil palm seeds and gave the highest EPN value of 12.93.  </p>


Sign in / Sign up

Export Citation Format

Share Document