The Development of a Novel High-Dose Pressurized Aerosol Dry-Powder Device (PADD) for the Delivery of Pumactant for Inhalation Therapy

2004 ◽  
Vol 17 (2) ◽  
pp. 123-128 ◽  
Author(s):  
Paul M. Young ◽  
Jim Thompson ◽  
Derek Woodcock ◽  
Mo Aydin ◽  
Robert Price
Pharmaceutics ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 1154
Author(s):  
Shahir Aziz ◽  
Regina Scherlieβ ◽  
Hartwig Steckel

Oseltamivir phosphate (OP) is an antiviral drug available only as oral therapy for the treatment of influenza and as a potential treatment option when in combination with other medication in the fight against the corona virus disease (COVID-19) pneumonia. In this study, OP was formulated as a dry powder for inhalation, which allows drug targeting to the site of action and potentially reduces the dose, aiming a more efficient therapy. Binary formulations were based on micronized excipient particles acting like diluents, which were blended with the drug OP. Different excipient types, excipient ratios, and excipient size distributions were prepared and examined. To investigate the feasibility of delivering high doses of OP in a single dose, 1:1, 1:3, and 3:1 drug/diluent blending ratios have been prepared. Subsequently, the aerosolization performance was evaluated for all prepared formulations by cascade impaction using a novel medium-resistance capsule-based inhaler (UNI-Haler). Formulations with micronized trehalose showed relatively excellent aerosolization performance with highest fine-particle doses in comparison to examined lactose, mannitol, and glucose under similar conditions. Focusing on the trehalose-based dry-powder inhalers’ (DPIs) formulations, a physicochemical characterization of extra micronized grade trehalose in relation to the achieved performance in dispersing OP was performed. Additionally, an early indication of inhaled OP safety on lung cells was noted by the viability MTT assay utilizing Calu-3 cells.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 189
Author(s):  
Zhanying Zheng ◽  
Sharon Shui Yee Leung ◽  
Raghvendra Gupta

Dry powder inhaler (DPI) is a device used to deliver a drug in dry powder form to the lungs. A wide range of DPI products is currently available, with the choice of DPI device largely depending on the dose, dosing frequency and powder properties of formulations. Computational fluid dynamics (CFD), together with various particle motion modelling tools, such as discrete particle methods (DPM) and discrete element methods (DEM), have been increasingly used to optimise DPI design by revealing the details of flow patterns, particle trajectories, de-agglomerations and depositions within the device and the delivery paths. This review article focuses on the development of the modelling methodologies of flow and particle behaviours in DPI devices and their applications to device design in several emerging fields. Various modelling methods, including the most recent multi-scale approaches, are covered and the latest simulation studies of different devices are summarised and critically assessed. The potential and effectiveness of the modelling tools in optimising designs of emerging DPI devices are specifically discussed, such as those with the features of high-dose, pediatric patient compatibility and independency of patients’ inhalation manoeuvres. Lastly, we summarise the challenges that remain to be addressed in DPI-related fluid and particle modelling and provide our thoughts on future research direction in this field.


2012 ◽  
Vol 438 (1-2) ◽  
pp. 150-159 ◽  
Author(s):  
Daniela Traini ◽  
Santo Scalia ◽  
Handoko Adi ◽  
Elisabetta Marangoni ◽  
Paul M. Young

Dose-Response ◽  
2019 ◽  
Vol 17 (2) ◽  
pp. 155932581985316 ◽  
Author(s):  
Shuji Kojima ◽  
Jerry M. Cuttler ◽  
Kiyomi Inoguchi ◽  
Kenshou Yorozu ◽  
Takashisa Horii ◽  
...  

We report on the application of radon inhalation therapy to patients with 4 types of cancer: colon, uterine, lung, and liver cell. The radon treatments were given to improve the efficacy of chemotherapy and were potent in all 4 cases. Marker values decreased and disease symptoms were alleviated. We include a lengthy discussion on the mechanism that may be responsible for the observed results. While employing the radon generator to treat the patient with hepatocellular carcinoma, we discovered that a concentration of 6 MBq/m3 was very effective, while 1 MBq/m3 was marginal. This implies different, and rather high, radon concentration thresholds for the treatment of different types of cancer. The evidence from these 4 cases suggests that radon inhalation may be beneficial against various cancer types as an important adjuvant therapy to conventional chemotherapy and for local high-dose radiotherapy, which would address the problem of distant metastasis. A previous case report on 2 patients with advanced breast cancer, who refused chemotherapy or radiotherapy, indicates that radon may be effective as a primary therapy for cancer. Clinical trials should be carried out to determine the best radon concentrations for treatment of other types of cancer, at different stages of progression.


Sign in / Sign up

Export Citation Format

Share Document