aerosol performance
Recently Published Documents


TOTAL DOCUMENTS

86
(FIVE YEARS 26)

H-INDEX

23
(FIVE YEARS 4)

2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Li Ding ◽  
Ashlee D. Brunaugh ◽  
Rishi Thakkar ◽  
Christian Lee ◽  
Qingyan Jenny Zhao ◽  
...  
Keyword(s):  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1528
Author(s):  
Yoen-Ju Son ◽  
Danforth P. Miller ◽  
Jeffry G. Weers

This manuscript critically reviews the design and delivery of spray-dried particles for the achievement of high total lung doses (TLD) with a portable dry powder inhaler. We introduce a new metric termed the product density, which is simply the TLD of a drug divided by the volume of the receptacle it is contained within. The product density is given by the product of three terms: the packing density (the mass of powder divided by the volume of the receptacle), the drug loading (the mass of drug divided by the mass of powder), and the aerosol performance (the TLD divided by the mass of drug). This manuscript discusses strategies for maximizing each of these terms. Spray drying at low drying rates with small amounts of a shell-forming excipient (low Peclet number) leads to the formation of higher density particles with high packing densities. This enables ultrahigh TLD (>100 mg of drug) to be achieved from a single receptacle. The emptying of powder from capsules is directly proportional to the mass of powder in the receptacle, requiring an inhaled volume of about 1 L for fill masses between 40 and 50 mg and up to 3.2 L for a fill mass of 150 mg.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1254
Author(s):  
Mohammad A. M. Momin ◽  
Bishal Raj Adhikari ◽  
Shubhra Sinha ◽  
Ian Larson ◽  
Shyamal C. Das

Roflumilast is currently administered orally to control acute exacerbations in chronic obstructive pulmonary disease (COPD). However, side effects such as gastrointestinal disturbance and weight loss have limited its application. This work aimed to develop an inhalable roflumilast formulation to reduce the dose and potentially circumvent the associated toxicity. Roflumilast was cospray-dried with trehalose and L-leucine with varied feed concentrations and spray-gas flow rates to produce the desired dry powder. A Next-Generation Impactor (NGI) was used to assess the aerosolization efficiency. In addition, different devices (Aerolizer, Rotahaler, and Handihaler) and flow rates were used to investigate their effects on the aerosolization efficiency. A cytotoxicity assay was also performed. The powders produced under optimized conditions were partially amorphous and had low moisture content. The powders showed good dispersibility, as evident by the high emitted dose (>88%) and fine particle fraction (>52%). At all flow rates (≥30 L/min), the Aerolizer offered the best aerosolization. The formulation exhibited stable aerosolization after storage at 25 °C / 15% Relative Humidity (RH) for one month. Moreover, the formulation was non-toxic to alveolar basal epithelial cells. A potential inhalable roflumilast formulation including L-leucine and trehalose has been developed for the treatment of COPD. This study also suggests that the choice of device is crucial to achieve the desired aerosol performance.


Author(s):  
Vishal Chaugule ◽  
Larissa Gomes Dos Reis ◽  
David F. Fletcher ◽  
Paul M. Young ◽  
Daniela Traini ◽  
...  

Inhalation therapy for respiratory disorders is being increasingly delivered via dry powder inhalers (DPIs), which are breath-actuated devices that deliver pharmaceutical drug particles to the lungs. The motion of inhalation air, produced when a patient inhales through this device, supplies all energy for the entrainment, de-agglomeration, and dispersion of powder drug agglomerates into a fine drug particle aerosol. The aerosol performance is directly related to the fluid-mechanics of a given DPI device. These flow mechanisms are complex as they depend on the device design, inhalation flow rate, and the properties of the dry powder formulation used. Among these, the role of device design is crucial as it significantly affects not only the generation and properties of delivered aerosol, but also the capability of targeted regional drug deposition.


Author(s):  
Yoen-Ju Son ◽  
Danforth P. Miller ◽  
Jeffry G. Weers

This manuscript critically reviews the design and delivery of spray-dried particles for the achievement of high total lung doses (TLD) with a portable dry powder inhaler. We introduce a new metric termed the product density, which is simply the TLD of a drug divided by the volume of the receptacle it is contained within. The product density is given by the product of three terms: the packing density (the mass of powder divided by the volume of the receptacle), the drug loading (the mass of drug divided by the mass of powder), and the aerosol performance (the TLD divided by the mass of drug). This manuscript discusses strategies for maximizing each of these terms. Spray drying at low drying rates with small amounts of a shell-forming excipient (low Peclet Number) leads to formation of higher density particles with high packing densities. This enables ultrahigh TLD (>100 mg of drug) to be achieved from a single receptacle. Emptying of powder from capsules is directly proportional to the mass of powder in the receptacle, requiring an inhaled volume of about 1 L for fill masses between 40 and 50 mg and up to 3.2 L for a fill mass of 150 mg.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1162
Author(s):  
Wei Yan ◽  
Ruide He ◽  
Xiaojiao Tang ◽  
Bin Tian ◽  
Yannan Liu ◽  
...  

The feasibility of using respirable bacteriophage (phage) powder to treat lung infections has been demonstrated in animal models and clinical studies. This work investigated the influence of formulation compositions and excipient concentrations on the aerosol performance and storage stability of phage powder. An anti-Acinetobacter baumannii phage vB_AbaM-IME-AB406 was incorporated into dry powders consisting of trehalose, mannitol and L-leucine for the first time. The phage stability upon the spray-drying process, room temperature storage and powder dispersion under different humidity conditions were assessed. In general, powders prepared with higher mannitol content (40% of the total solids) showed a lower degree of particle merging and no sense of stickiness during sample handling. These formulations also provided better storage stability of phage with no further titer loss after 1 month and <1 log titer loss in 6 months at high excipient concentration. Mannitol improved the dispersibility of phage powders, but the in vitro lung dose dropped sharply after exposure to high-humidity condition (65% RH) for formulations with 20% mannitol. While previously collected knowledge on phage powder preparation could be largely extended to formulate A. baumannii phage into inhalable dry powders, the environmental humidity may have great impacts on the stability and dispersion of phage; therefore, specific attention is required when optimizing phage powder formulations for global distribution.


Nanomedicine ◽  
2021 ◽  
Author(s):  
Richa Vartak ◽  
Suyash M Patil ◽  
Aishwarya Saraswat ◽  
Manali Patki ◽  
Nitesh K Kunda ◽  
...  

Aim: To formulate an aerosolized nanoliposomal carrier for remdesivir (AL-Rem) against coronavirus disease 2019. Methods: AL-Rem was prepared using modified hydration technique. Cytotoxicity in lung adenocarcinoma cells, stability and aerodynamic characteristics of developed liposomes were evaluated. Results: AL-Rem showed high encapsulation efficiency of 99.79%, with hydrodynamic diameter of 71.46 ± 1.35 nm and surface charge of -32 mV. AL-Rem demonstrated minimal cytotoxicity in A549 cells and retained monolayer integrity of Calu-3 cells. AL-Rem showed sustained release, with complete drug release obtained within 50 h in simulated lung fluid. Long-term stability indicated >90% drug recovery at 4°C. Desirable aerosol performance, with mass median aerodynamic diameter of 4.56 ± 0.55 and fine particle fraction of 74.40 ± 2.96%, confirmed successful nebulization of AL-Rem. Conclusion: AL-Rem represents an effective alternative for coronavirus disease 2019 treatment.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 615
Author(s):  
Jason C. K. Lo ◽  
Harry W. Pan ◽  
Jenny K. W. Lam

The prospect of inhaled biologics has garnered particular interest given the benefits of the pulmonary route of administration. Pertinent considerations in producing inhalable dry powders containing biological medicines relate to aerosol performance and protein stability. Spray-freeze-drying (SFD) has emerged as an established method to generate microparticles that can potentially be deposited in the lungs. Here, the SFD conditions and formulation composition were evaluated using bovine serum albumin (BSA) as a model protein and 2-hydroxypropyl-beta-cyclodextrin (HPβCD) as the protein stabilizer. A factorial design analysis was performed to investigate the effects of BSA content, solute concentration of feed solution, and atomization gas flow rate on dispersibility (as an emitted fraction), respirability (as fine particle fraction), particle size, and level of protein aggregation. The atomization gas flow rate was identified as a significant factor in influencing the aerosol performance of the powder formulations and protein aggregation. Nonetheless, high atomization gas flow rate induced aggregation, highlighting the need to further optimize the formulation. Of note, all the formulations exhibited excellent dispersibility, while no fragmentation of BSA occurred, indicating the feasibility of SFD and the promise of HPβCD as an excipient.


Sign in / Sign up

Export Citation Format

Share Document