Is the Effect of Interleukin-1 on Glutathione Oxidation in Cultured Human Fibroblasts Involved in Nuclear Factor-κB Activation?

2001 ◽  
Vol 3 (2) ◽  
pp. 329-340 ◽  
Author(s):  
Patricia Renard ◽  
Edouard Delaive ◽  
Martine Van Steenbrugge ◽  
José Remacle ◽  
Martine Raes
2003 ◽  
Vol 370 (1) ◽  
pp. 159-166 ◽  
Author(s):  
Ken YANAGISAWA ◽  
Kenji TAGO ◽  
Morisada HAYAKAWA ◽  
Motomichi OHKI ◽  
Hiroyuki IWAHANA ◽  
...  

Interleukin-1 (IL-1)-receptor-associated kinase (IRAK) is an indispensable signalling molecule for host-defence responses initiated by a variety of ligands that bind to members of the Toll/IL-1 receptor family. Here we report a novel splice variant of mouse IRAK-1, IRAK-1-S, which is generated by utilizing a new splicing acceptor site within exon 12. IRAK-1-S cDNA is shorter than the originally reported IRAK-1 (IRAK-1-W) cDNA by 271 nucleotides, and the subsequent frameshift causes a premature termination of translation after 23 amino acids, which are unique to the IRAK-1-S protein. To elucidate the physiological function of IRAK-1-S, we overexpressed it in 293T cells and studied the effects on the IL-1 signalling cascade. As it lacks the C-terminal region of IRAK-1-W that has been reported to contain the TRAF6 (tumour necrosis factor receptor-associated factor 6) binding domain, IRAK-1-S was unable to bind TRAF6 protein, which is a proposed downstream signalling molecule. However, IRAK-1-S overexpressed in 293T cells induced constitutive activation of nuclear factor-κB (NF-κB) and c-Jun N-terminal kinase (JNK) independent of stimulation by IL-1, as did IRAK-1-W. To clarify the mechanism of NF-κB activation by IRAK-1-S in the absence of binding to TRAF6, we demonstrated that IRAK-1-S binds to IRAK-1-W through its death domain; the findings suggested that overexpressed IRAK-1-S may bind endogenous IRAK-1-W and activate TRAF6 through IRAK-1-W. These results also indicate that this novel variant may play roles in the activation of NF-κB and JNK by IL-1 and other ligands whose signal transduction is dependent on IRAK-1 under physiological conditions.


2000 ◽  
Vol 68 (4) ◽  
pp. 1942-1945 ◽  
Author(s):  
Francisco Arnalich ◽  
Esther Garcia-Palomero ◽  
Julia López ◽  
Manuel Jiménez ◽  
Rosario Madero ◽  
...  

ABSTRACT The relationship between fluctuating cytokine concentrations in plasma and the outcome of sepsis is complex. We postulated that early measurement of the activation of nuclear factor κB (NF-κB), a transcriptional regulatory protein involved in proinflammatory cytokine expression, may help to predict the outcome of sepsis. We determined NF-κB activation in peripheral blood mononuclear cells of 34 patients with severe sepsis (23 survivors and 11 nonsurvivors) and serial concentrations of inflammatory cytokines (interleukin-6, interleukin-1, and tumor necrosis factor) and various endogenous antagonists in plasma. NF-κB activity was significantly higher in nonsurvivors and correlated strongly with the severity of illness (APACHE II score), although neither was related to the cytokine levels. Apart from NF-κB activity, the interleukin-1 receptor antagonist was the only cytokine tested whose level in plasma was of value in predicting mortality by logistic regression analysis. These results underscore the prognostic value of early measurement of NF-κB activity in patients with severe sepsis.


2020 ◽  
Vol 19 (3) ◽  
pp. 255-260
Author(s):  
Fan Yang ◽  
Lu Deng ◽  
MuHu Chen ◽  
Ying Liu ◽  
Jianpeng Zheng

Acute lung injury initiated systemic inflammation leads to sepsis. Septic mice show a series of degenerative changes in lungs as demonstrated by pulmonary congestion, alveolar collapse, inflammatory cell infiltration, and increased wet-todry weight in lungs. 6-Gingerol ameliorates histopathological changes and clinical outcome of the sepsis. The increase in the levels of tumor necrosis factor-α, interleukin-1 beta, interleukin-6, and interleukin-18 in septic mice were reduced by administration with 6-Gingerol. Also, 6-Gingerol attenuates sepsis-induced increase of malonaldehyde and decrease of catalase, superoxide, and glutathione. Enhanced phospho-p65, reduced nuclear factor erythropoietin-2-related factor 2, and heme oxygenase 1 in septic mice were reversed by administration with 6-Gingerol. In conclusion, 6-Gingerol demonstrates anti-inflammatory and antioxidant effects against sepsis associated acute lung injury through inactivation of nuclear factor-kappa B and activation of nuclear-factor erythroid 2-related factor 2 pathways.


1999 ◽  
Vol 189 (11) ◽  
pp. 1839-1845 ◽  
Author(s):  
Zhi-Wei Li ◽  
Wenming Chu ◽  
Yinling Hu ◽  
Mireille Delhase ◽  
Tom Deerinck ◽  
...  

The IκB kinase (IKK) complex is composed of three subunits, IKKα, IKKβ, and IKKγ (NEMO). While IKKα and IKKβ are highly similar catalytic subunits, both capable of IκB phosphorylation in vitro, IKKγ is a regulatory subunit. Previous biochemical and genetic analyses have indicated that despite their similar structures and in vitro kinase activities, IKKα and IKKβ have distinct functions. Surprisingly, disruption of the Ikkα locus did not abolish activation of IKK by proinflammatory stimuli and resulted in only a small decrease in nuclear factor (NF)-κB activation. Now we describe the pathophysiological consequence of disruption of the Ikkβ locus. IKKβ-deficient mice die at mid-gestation from uncontrolled liver apoptosis, a phenotype that is remarkably similar to that of mice deficient in both the RelA (p65) and NF-κB1 (p50/p105) subunits of NF-κB. Accordingly, IKKβ-deficient cells are defective in activation of IKK and NF-κB in response to either tumor necrosis factor α or interleukin 1. Thus IKKβ, but not IKKα, plays the major role in IKK activation and induction of NF-κB activity. In the absence of IKKβ, IKKα is unresponsive to IKK activators.


2007 ◽  
Vol 5 (8) ◽  
pp. 847-861 ◽  
Author(s):  
Katie L. Streicher ◽  
Nicole E. Willmarth ◽  
Jose Garcia ◽  
Julie L. Boerner ◽  
T. Gregory Dewey ◽  
...  

1999 ◽  
Vol 339 (2) ◽  
pp. 227-231 ◽  
Author(s):  
Barbara MASCHERA ◽  
Keith RAY ◽  
Kimberly BURNS ◽  
Filippo VOLPE

Upon interleukin 1 (IL-1) stimulation, the IL-1-receptor (IL-1R)-associated kinase (IRAK) is rapidly recruited to the IL-1R complex and undergoes phosphorylation. Here we demonstrate that recombinant wild-type IRAK (IRAK-WT), but not a kinase-defective mutant with Asp340 replaced by an asparagine residue (IRAK-Asp340Asn), is highly phosphorylated and is capable of auto-phosphorylation in vitro. Overexpression of both IRAK-WT and IRAK-Asp340Asn caused activation of nuclear factor κB, suggesting that the kinase activity of IRAK is not required outside of the IL-1R complex.


2003 ◽  
Vol 279 (3) ◽  
pp. 1768-1776 ◽  
Author(s):  
Yasuhiro Yoshida ◽  
Arvind Kumar ◽  
Yoshinobu Koyama ◽  
Haibing Peng ◽  
Ahmet Arman ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document