Antibiotic Resistance inEscherichia coliIsolated from Retail Raw Chicken Meat in Taif, Saudi Arabia

2010 ◽  
Vol 7 (3) ◽  
pp. 281-285 ◽  
Author(s):  
Abdullah D. Altalhi ◽  
Youssuf A. Gherbawy ◽  
Sabry A. Hassan
Author(s):  
Akbar Ali ◽  
Vijay R. Chidrawar

Aims: Multidrug resistant (MDR) bacteria pose a major public health issuer globally. The genes for antibiotic resistance are transferred vertically in the form of genomic DNA and horizontally in the form of plasmids or transposons. Antibiotic are extensively used in animal farming to treat and prevent animal diseases, and at sub-therapeutic doses, they are used to promote animal growth. This extensive use of antibiotics is causing an increase in resistance among bacteria. More frequent, chicken meat available at retail shops is reported to be contaminated with a variety of drug resistant bacteria including E. Coli. The aim of the present study was to investigate antibiotic resistance in Escherichia coli strains isolated from chicken meat available in the local shops of Rafha, Saudi Arabia. Place and Duration of Study: Department of basic health sciences, College of Pharmacy, Northern Border University, Rafha, Saudi Arabia, between February and October, 2019 Methodology: Eighty-six E. coli strains, isolated from chicken meat, were tested for their antibiotic resistance profile, using the disc diffusion method.    Results: All the isolated E. coli strains were tested against 14 antibiotics. The maximum resistance was found against penicillin G (95%) followed by amoxicillin (85%), Cephalothin (81%), Erythromycin (72%), and Tetracycline (50%). Imipenem was the most effective agent of all with only 1% resistance followed by Cefepime with almost 6% resistance. A high percentage of the isolates (57%,) were multidrug resistant as they were non—susceptible to at least one antimicrobial in ≥3 antimicrobial classes including amoxicillin, erythromycin and tetracycline. Conclusion: The prevalence of MDR E. coli in retail chicken meat is very high and could pose a serious threat to public health.


2021 ◽  
Vol 5 (1) ◽  
pp. 19-26
Author(s):  
Bidyut Matubber ◽  
Farzana Islam Rume ◽  
Mohammad Enamul Hoque Kayesh ◽  
Mohammad Mahfuzur Rahman ◽  
Mohammad Rohul Amin ◽  
...  

The presence of antibiotic residue in chicken and animal meats is a serious threat to human health due to its harmful effects. This study aimed at identifying the antibiotic resistance patterns of the isolates as well as antibiotic residues in chicken, cattle, buffalo and goat meats in different southern districts of Bangladesh. A total of 205 meat samples, including 70 chicken meat, 60 cattle meat, 50 buffalo meat and 25 goat meat were aseptically collected and analysed for the detection of antibiotic residues by thin layer chromatography and the isolates obtained from these samples were subjected to antibiogram study against 16 commonly used antibiotics. The isolates found in this study were Staphylococcus spp., Streptococcus spp., Escherichia coli, and Salmonella spp. and their prevalence were 37.5% (77/205), 22.1% (48/205), 29.7% (61/205), 8.7% (19/205), respectively. The isolates showed different degrees of sensitivity to the antibiotics used in the study. The most resistant phenotype was against cefradine, amoxicillin, penicillin, oxytetracycline, erythromycin, and enrofloxacin. 18.5% (38/205) meat samples were found to be positive for antibiotic residues and the highest prevalence was observed in chicken meat compared to other meat types. Overall, the findings of the study suggest that it is important to take controlling measures for the emergence of antibiotic resistance and also for ensuring healthy meats for human consumption. Asian Australas. J. Food Saf. Secur. 2021, 5 (1), 19-26


2011 ◽  
Vol 5 (10) ◽  
pp. 692-699 ◽  
Author(s):  
Maha Abd El Hafez ◽  
Noha G. Khalaf ◽  
Mohamed El Ahmady ◽  
Ahmed Abd El Aziz ◽  
Abd El Gawad Hashim

Introduction: Staphylococcus epidermidis is a pathogen associated with nosocomial infection in neonatal intensive care units (NICU). This study investigates an outbreak of methicillin resistant S. epidermidis in an NICU in a hospital in Saudi Arabia. Methodology: A total of 41 isolates identified as Gram-positive cocci were obtained from blood culture, umbilical wound swabs and endotracheal aspirate specimens of neonates, of which 29 were identified as S. epidermidis. Bacterial identification at the species level and determination of antibiotic resistance were performed by MicroScan (Dade Behring, USA). Genotyping was completed using randomly amplified polymorphic DNA (RAPD) and the mecA gene was detected by PCR. Results: All 29 S. epidermidis isolates were found to be resistant to oxacillin and were positive for the mecA gene. The isolates showed several multidrug-resistance patterns; the resistance rates to gentamicin, erythromycin, clindamycin, and trimethoprim/sulfamethoxazole were 89.7%, 86.2%, 75.9% and 72.4%, respectively. All isolates were susceptible to vancomycin, teicoplanin, rifampin, synercid, and ciprofloxacin. Several genotypic and phenotypic patterns were detected among the S. epidermidis isolates: antibiogram typing showed seven different patterns, one of which was shared by 65% of the isolates, whereas the most prevalent RAPD genotype was shared by only five S. epidermidis isolates, and did not correlate with antibiotic resistance phenotype. Conclusion: The diverse clonal origin of tested isolates indicates the presence of multiple S. epidermidis strains among neonates in the NICU setting


2016 ◽  
Vol 95 (8) ◽  
pp. 1888-1893 ◽  
Author(s):  
T.Y. Thung ◽  
N.A. Mahyudin ◽  
D.F. Basri ◽  
C.W.J. Wan Mohamed Radzi ◽  
Y. Nakaguchi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document