scholarly journals Preclinical Development of a Hematopoietic Stem and Progenitor Cell Bioengineered Factor VIII Lentiviral Vector Gene Therapy for Hemophilia A

2018 ◽  
Vol 29 (10) ◽  
pp. 1183-1201 ◽  
Author(s):  
Christopher B. Doering ◽  
Gabriela Denning ◽  
Jordan E. Shields ◽  
Eli J. Fine ◽  
Ernest T. Parker ◽  
...  
Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Natalie J. Ward ◽  
Suzanne M. K. Buckley ◽  
Simon N. Waddington ◽  
Thierry VandenDriessche ◽  
Marinee K. L. Chuah ◽  
...  

Abstract Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII. In this study, we tested various BDD constructs in the context of either wild-type or codon-optimized cDNA sequences expressed under control of the strong, ubiquitous Spleen Focus Forming Virus promoter within a self-inactivating HIV-based lentiviral vector. Transduced 293T cells in vitro demonstrated detectable FVIII activity. Hemophilic mice treated with lentiviral vectors showed expression of FVIII activity and phenotypic correction sustained over 250 days. Importantly, codon-optimized constructs achieved an unprecedented 29- to 44-fold increase in expression, yielding more than 200% normal human FVIII levels. Addition of B domain sequences to BDD-FVIII did not significantly increase in vivo expression. These significant findings demonstrate that shorter FVIII constructs that can be more easily accommodated in viral vectors can result in increased therapeutic efficacy and may deliver effective gene therapy for hemophilia A.


Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3544-3544
Author(s):  
Nadia Sutherland ◽  
Kerry L Dooriss ◽  
David A McCarty ◽  
Christopher B Doering ◽  
H. Trent Spencer

Abstract Hemophilia A is an X-linked gene disorder that results in a deficiency of circulating coagulation factor VIII (fVIII) and may be ameliorated by only modest amounts of circulating protein, which makes it a logical candidate for gene therapy. Due to the potential risk of insertional mutagenesis from oncoretroviral-mediated gene therapy, cell-specific expression of transgenes using self-inactivating viral vectors may provide a safer gene therapy approach for use in humans. Therefore, we constructed simian immunodeficiency virus (SIV)-based lentiviral vectors containing a 5′ long-terminal repeat (LTR) and 3′ LTR with self-inactivating U3 deletion, the bovine growth hormone polyA signal, a packaging signal (ψ), and a single internal ankyrin-1 or β-globin promoter, designated SIV-Ank and SIV-Bg, respectively. The minimal 314-bp ankyrin-1 promoter and 180-bp β-globin promoter flanked upstream by enhancing sequences, HS2, HS3, and HS4 (Hanawa et al., Hum Gene Ther, 2002) from the locus control region were cloned into the SIV vector backbone upstream from either enhanced green fluorescent protein (eGFP) or B-domain deleted porcine factor VIII (BDDpfVIII). The erythroid-specificity of each promoter was evaluated in vitro by measurement of either eGFP or fVIII expression following transduction of SIV-Ank and SIV-Bg constructs into both K562 myelogenous leukemic cells and 293T human embryonic kidney cells. GFP expression, as measured by flow cytometry, in transduced cells revealed that the ankyrin-1 and β-globin promoters are more active in K562 cells as compared to 293T cells. The β-globin promoter yielded higher mean fluorescent intensity values for GFP compared to the ankyrin-1 promoter at similar MOIs in K562 cells, suggesting stronger β-globin promoter activity in these cells. Transduction of cells with the SIV vector encoding BDDpfVIII driven by the β-globin promoter resulted in a 14-fold higher number of transcripts per DNA copy number in K562 cells compared to 293T cells, while cells transduced with the ankyrin-l promoter had only a 1.4-fold greater number of transcripts per DNA copy number. In addition, SIV-Bg-fVIII-modified K562 cells produced a 5.2-fold greater number of transcripts per DNA copy number than SIV-Ank- fVIII-modified cells. To evaluate the usefulness of these vectors for in vivo expression of BDDpfVIII, hemophilia A mice (exon 16 knockout) were conditioned with 11 Gy total body irradiation and transplanted with gene-modified Sca-1+ cells transduced with either SIV-Ank-fVIII, SIV-Ank-eGFP, SIV-Bg-fVIII, or SIV-Bg-eGFP. The expression of eGFP from donor red blood cells in recipient mice was approximately 8–12% using both the ankyrin-1 and β-globin promoter constructs. Mice that received cells transduced with SIVAnk- fVIII demonstrated therapeutic levels of plasma fVIII up to 0.5 units/mL (i.e. 50% normal human levels). However, fVIII expression decreased over time and real-time PCR analysis of peripheral blood cells confirmed the loss of detectable fVIII transgene by 6 weeks after transplantation, suggesting there was predominantly gene transfer into short-term repopulating hematopoietic cells. Mice transplanted with SIV-Bg-fVIII-modified hematopoietic stem cells demonstrated a similar rise and fall of fVIII expression within the first 4 weeks after transplantation, and showed an increase in fVIII expression by 6 weeks. At 8 weeks post transplantation, fVIII levels greater than 300% normal human levels were observed. Red blood cell count, hemoglobin, and red blood cell morphology were normal despite the high level of expression of fVIII. Overall these data demonstrate the potential for therapeutic expression of factor VIII using a self-inactivating lentiviral vector containing an erythroid-specific internal promoter.


Gene Therapy ◽  
2012 ◽  
Vol 20 (6) ◽  
pp. 607-615 ◽  
Author(s):  
J M Johnston ◽  
G Denning ◽  
C B Doering ◽  
H T Spencer

Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 549
Author(s):  
Laura Garcia-Perez ◽  
Anita Ordas ◽  
Kirsten Canté-Barrett ◽  
Pauline Meij ◽  
Karin Pike-Overzet ◽  
...  

Recent clinical trials using patient’s own corrected hematopoietic stem cells (HSCs), such as for primary immunodeficiencies (Adenosine deaminase (ADA) deficiency, X-linked Severe Combined Immunodeficiency (SCID), X-linked chronic granulomatous disease (CGD), Wiskott–Aldrich Syndrome (WAS)), have yielded promising results in the clinic; endorsing gene therapy to become standard therapy for a number of diseases. However, the journey to achieve such a successful therapy is not easy, and several challenges have to be overcome. In this review, we will address several different challenges in the development of gene therapy for immune deficiencies using our own experience with Recombinase-activating gene 1 (RAG1) SCID as an example. We will discuss product development (targeting of the therapeutic cells and choice of a suitable vector and delivery method), the proof-of-concept (in vitro and in vivo efficacy, toxicology, and safety), and the final release steps to the clinic (scaling up, good manufacturing practice (GMP) procedures/protocols and regulatory hurdles).


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Tugba Mehmetoglu-Gurbuz ◽  
Rose Yeh ◽  
Himanshu Garg ◽  
Anjali Joshi

Abstract Background Gene therapy approaches using hematopoietic stem cells to generate an HIV resistant immune system have been shown to be successful. The deletion of HIV co-receptor CCR5 remains a viable strategy although co-receptor switching to CXCR4 remains a major pitfall. To overcome this, we designed a dual gene therapy strategy that incorporates a conditional suicide gene and CCR5 knockout (KO) to overcome the limitations of CCR5 KO alone. Methods A two-vector system was designed that included an integrating lentiviral vector that expresses a HIV Tat dependent Thymidine Kinase mutant SR39 (TK-SR39) and GFP reporter gene. The second non-integrating lentiviral (NIL) vector expresses a CCR5gRNA-CRISPR/Cas9 cassette and HIV Tat protein. Results Transduction of cells sequentially with the integrating followed by the NIL vector allows for insertion of the conditional suicide gene, KO of CCR5 and transient expression of GFP to enrich the modified cells. We used this strategy to modify TZM cells and generate a cell line that was resistant to CCR5 tropic viruses while permitting infection of CXCR4 tropic viruses which could be controlled via treatment with Ganciclovir. Conclusions Our study demonstrates proof of principle that a combination gene therapy for HIV is a viable strategy and can overcome the limitation of editing CCR5 gene alone.


2018 ◽  
Vol 9 ◽  
pp. 257-269 ◽  
Author(s):  
Valentina Poletti ◽  
Sabine Charrier ◽  
Guillaume Corre ◽  
Bernard Gjata ◽  
Alban Vignaud ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document