High-Expression Porcine FVIII Driven by Erythroid-Specific Promoters for Lentiviral Vector-Mediated Gene Therapy

Blood ◽  
2008 ◽  
Vol 112 (11) ◽  
pp. 3544-3544
Author(s):  
Nadia Sutherland ◽  
Kerry L Dooriss ◽  
David A McCarty ◽  
Christopher B Doering ◽  
H. Trent Spencer

Abstract Hemophilia A is an X-linked gene disorder that results in a deficiency of circulating coagulation factor VIII (fVIII) and may be ameliorated by only modest amounts of circulating protein, which makes it a logical candidate for gene therapy. Due to the potential risk of insertional mutagenesis from oncoretroviral-mediated gene therapy, cell-specific expression of transgenes using self-inactivating viral vectors may provide a safer gene therapy approach for use in humans. Therefore, we constructed simian immunodeficiency virus (SIV)-based lentiviral vectors containing a 5′ long-terminal repeat (LTR) and 3′ LTR with self-inactivating U3 deletion, the bovine growth hormone polyA signal, a packaging signal (ψ), and a single internal ankyrin-1 or β-globin promoter, designated SIV-Ank and SIV-Bg, respectively. The minimal 314-bp ankyrin-1 promoter and 180-bp β-globin promoter flanked upstream by enhancing sequences, HS2, HS3, and HS4 (Hanawa et al., Hum Gene Ther, 2002) from the locus control region were cloned into the SIV vector backbone upstream from either enhanced green fluorescent protein (eGFP) or B-domain deleted porcine factor VIII (BDDpfVIII). The erythroid-specificity of each promoter was evaluated in vitro by measurement of either eGFP or fVIII expression following transduction of SIV-Ank and SIV-Bg constructs into both K562 myelogenous leukemic cells and 293T human embryonic kidney cells. GFP expression, as measured by flow cytometry, in transduced cells revealed that the ankyrin-1 and β-globin promoters are more active in K562 cells as compared to 293T cells. The β-globin promoter yielded higher mean fluorescent intensity values for GFP compared to the ankyrin-1 promoter at similar MOIs in K562 cells, suggesting stronger β-globin promoter activity in these cells. Transduction of cells with the SIV vector encoding BDDpfVIII driven by the β-globin promoter resulted in a 14-fold higher number of transcripts per DNA copy number in K562 cells compared to 293T cells, while cells transduced with the ankyrin-l promoter had only a 1.4-fold greater number of transcripts per DNA copy number. In addition, SIV-Bg-fVIII-modified K562 cells produced a 5.2-fold greater number of transcripts per DNA copy number than SIV-Ank- fVIII-modified cells. To evaluate the usefulness of these vectors for in vivo expression of BDDpfVIII, hemophilia A mice (exon 16 knockout) were conditioned with 11 Gy total body irradiation and transplanted with gene-modified Sca-1+ cells transduced with either SIV-Ank-fVIII, SIV-Ank-eGFP, SIV-Bg-fVIII, or SIV-Bg-eGFP. The expression of eGFP from donor red blood cells in recipient mice was approximately 8–12% using both the ankyrin-1 and β-globin promoter constructs. Mice that received cells transduced with SIVAnk- fVIII demonstrated therapeutic levels of plasma fVIII up to 0.5 units/mL (i.e. 50% normal human levels). However, fVIII expression decreased over time and real-time PCR analysis of peripheral blood cells confirmed the loss of detectable fVIII transgene by 6 weeks after transplantation, suggesting there was predominantly gene transfer into short-term repopulating hematopoietic cells. Mice transplanted with SIV-Bg-fVIII-modified hematopoietic stem cells demonstrated a similar rise and fall of fVIII expression within the first 4 weeks after transplantation, and showed an increase in fVIII expression by 6 weeks. At 8 weeks post transplantation, fVIII levels greater than 300% normal human levels were observed. Red blood cell count, hemoglobin, and red blood cell morphology were normal despite the high level of expression of fVIII. Overall these data demonstrate the potential for therapeutic expression of factor VIII using a self-inactivating lentiviral vector containing an erythroid-specific internal promoter.

Blood ◽  
2011 ◽  
Vol 117 (3) ◽  
pp. 798-807 ◽  
Author(s):  
Natalie J. Ward ◽  
Suzanne M. K. Buckley ◽  
Simon N. Waddington ◽  
Thierry VandenDriessche ◽  
Marinee K. L. Chuah ◽  
...  

Abstract Gene therapy for hemophilia A would be facilitated by development of smaller expression cassettes encoding factor VIII (FVIII), which demonstrate improved biosynthesis and/or enhanced biologic properties. B domain deleted (BDD) FVIII retains full procoagulant function and is expressed at higher levels than wild-type FVIII. However, a partial BDD FVIII, leaving an N-terminal 226 amino acid stretch (N6), increases in vitro secretion of FVIII tenfold compared with BDD-FVIII. In this study, we tested various BDD constructs in the context of either wild-type or codon-optimized cDNA sequences expressed under control of the strong, ubiquitous Spleen Focus Forming Virus promoter within a self-inactivating HIV-based lentiviral vector. Transduced 293T cells in vitro demonstrated detectable FVIII activity. Hemophilic mice treated with lentiviral vectors showed expression of FVIII activity and phenotypic correction sustained over 250 days. Importantly, codon-optimized constructs achieved an unprecedented 29- to 44-fold increase in expression, yielding more than 200% normal human FVIII levels. Addition of B domain sequences to BDD-FVIII did not significantly increase in vivo expression. These significant findings demonstrate that shorter FVIII constructs that can be more easily accommodated in viral vectors can result in increased therapeutic efficacy and may deliver effective gene therapy for hemophilia A.


Gene Therapy ◽  
2012 ◽  
Vol 20 (6) ◽  
pp. 607-615 ◽  
Author(s):  
J M Johnston ◽  
G Denning ◽  
C B Doering ◽  
H T Spencer

2018 ◽  
Vol 29 (10) ◽  
pp. 1183-1201 ◽  
Author(s):  
Christopher B. Doering ◽  
Gabriela Denning ◽  
Jordan E. Shields ◽  
Eli J. Fine ◽  
Ernest T. Parker ◽  
...  

Blood ◽  
2019 ◽  
Vol 134 (Supplement_1) ◽  
pp. 611-611 ◽  
Author(s):  
Giang N. Nguyen ◽  
John K. Everett ◽  
Hayley Raymond ◽  
Samita Kafle ◽  
Elizabeth P. Merricks ◽  
...  

Hemophilia is an X-linked bleeding disorder caused by a deficiency in clotting factor VIII (FVIII)(hemophilia A, HA) or factor IX (FIX)(hemophilia B, HB). While early clinical trials of AAV delivery of FIX for HB have demonstrated stable FIX expression for >8 years, an ongoing clinical trial of AAV-FVIII delivery for HA achieved high levels of transgene expression that unexpectedly declined after 1 year. Here we describe preclinical studies of AAV-canine FVIII (cFVIII) delivery in nine HA dogs with sustained FVIII expression for the duration of the study, as long as 10 years. FVIII was delivered using two delivery approaches: (1) co-administration of two AAV vectors encoding separate cFVIII heavy and light chains driven by the thyroxine binding globulin (TBG) promoter (Two chain approach)(TC) (n=5) at two AAV doses (2.5 x 1013vg/kg; F24, Woodstock, J60) and (1.2 x 1013vg/kg; Linus, H19) or (2) delivery of cFVIII as a single chain driven by the human alpha-1 anti-trypsin (hAAT) promoter (Single chain approach)(SC)(n=4) at two AAV doses (4 x 1013 vg/kg; M50, M06) and (2 x 1013vg/kg; M66, L51) (Sabatino 2011). We demonstrated that both strategies were efficacious; preventing >95% of spontaneous bleeding episodes without toxicity. We now report the long-term follow-up of between 2.2 and 10.1 years for these treated dogs. Dose-dependent cFVIII:C (Coatest SP4 FVIII) was observed. At the final time point, the cFVIII:C was 2.7% (F24), 7.1% (Woodstock), 4.5% (J60), 11.3% (Linus) and 2.5% (H19) for TC dogs. For the SC dogs, the cFVIII:C was 9.4% (M06), 10.3% (M50), 1.9% (L51) and 3.7% (M66). Stable FVIII expression was maintained for seven of the dogs over the course of the study. Two dogs (Linus, M50) had a gradual increase in FVIII:C that began about three years after vector administration and continued for an additional seven years (Linus) and four years (M50), until the termination of the study. Liver function tests, serum alpha-fetoprotein concentrations, fibrinogen levels as well as liver pathology did not suggest altered liver function or tumor development in Linus and M50 compared to the other dogs. Clinically, there was no evidence of malignancy and no tumors were detected at the time of necropsy in any dog. One of the safety concerns for AAV-mediated gene therapy approaches is the potential for AAV integration events to be genotoxic and lead to tumorigenesis. While recombinant AAV primarily remains as an episome, integration events have been observed in mouse models and hepatocellular carcinoma has been observed after neonatal delivery of AAV vectors. In addition, the increase in FVIII expression in Linus and M50 prompted us to investigate integration and clonal expansion as a potential mechanism for these observations. Vector copy number (VCN) analysis was performed on liver samples (5-29 per dog, n=8 dogs) by Q-PCR and detected DNA copy numbers between 0.0 and 7.8 per diploid genome (Fig 1A). We performed integration target site analysis on liver samples (n=3/dog) from six of the AAV-treated HA dogs and naïve HA dogs (n=2) by ligation-mediated PCR, Ilumina paired-end sequencing and analysis using the custom software pipeline, AAVenger. Analysis of the 20 samples identified >2,000 unique AAV integration events (IE). There was a correlation between the DNA copy number and the number of integration events detected. Clonal abundances were estimated by counting the unique genome breaks associated with integration positions, which showed that the maximum clonal abundance ranged from 1 to 138. The integration events were distributed across the canine genome. Clonal expansions were observed with integration near genes previously associated with growth control and transformation in humans (Fig 1B) with the most abundant clones located in DLEU2L (Linus), PEBP4 (J60) and EGR3 (M50). Integration events in EGR3, EGR2, CCND1, LTO1 and ZNF365 were detected in multiple dogs. Validation of integration sites in the most abundant clones was performed using targeted PCR to isolate junction fragments followed by Sanger sequencing. While AAV integration and clonal expansion was observed, the dogs had no evidence for tumorigenesis and it is not clear if the increase in FVIII expression is associated with the clonal expansions detected. Overall, these studies demonstrate long-term sustained FVIII expression for up to 10 years with clonal expansion, but without clinical adverse events after AAV-mediated gene therapy for hemophilia. Disclosures Sabatino: Spark Therapeutics: Patents & Royalties.


1963 ◽  
Vol 09 (01) ◽  
pp. 030-052 ◽  
Author(s):  
Eberhard Mammen

SummaryIn this paper an inhibitor is described that is found in hemophilic plasma and serum different from any till now described inhibitor. The inhibitor only inhibits prothrombin activation in the “intrinsic clotting systems”. This inhibitor is probably not present in normal human plasma or serum. It is destroyed by ether and freeze drying, is labile to acid and storage at room temperature. It is stable upon dialysis and has not been adsorbed on barium sulfate, aluminum hydroxide or kaolin. It precipitates at 50% v/v saturation with alcohol. The nature of this inhibitor seems to be a protein or lipoprotein.Factor VIII was isolated from hemophilic plasma. The amount isolated was the same as from normal plasma and the activity properties were not different. Hemophiliacs have normal amounts of factor VIII.


1966 ◽  
Vol 16 (03/04) ◽  
pp. 559-573 ◽  
Author(s):  
L Uszyński

SummaryRabbits immunized against human AHG fibrinogen-free preparations, were shown to produce anti-AHG antibodies. The inhibitory activity of these antibodies was tested by thromboplastin generation test, thrombelastography, and the specific anti-AHG antibodies neutralization test. The latter test permitted quantitative determination of antigenic form of factor VIII. The inhibitory activity of anti-FI-O-Ta serum resulted exclusively from the anti-AHG antibodies which in coagulation tests behaved like circulating anticoagulants directed against factor VIII.The anti-AHG antibodies were neutralizable by normal human serum or plasma even contained only trace of AHG activity after storage. There was no antigenic form of factor VIII in the severely affected patients with hemophilia A, von Willebrand’s disease nor in the normal plasma adsorbed on bentonite. The presented results suggest a molecular defect of factor VIII in patients with hemophilia A. The severe form of this disease depends, probably, on a major impairment of AHG biosynthesis, leading to changes in the antigenic properties of the molecule. The AHG from rabbit, porcine and bovine plasma respectively did not neutralize the anti-AHG antibodies formed in rabbits immunized against human factor VIII preparations.


1999 ◽  
Vol 82 (08) ◽  
pp. 555-561 ◽  
Author(s):  
Douglas Jolly ◽  
Judith Greengard

IntroductionHemophilia A results from the plasma deficiency of factor VIII, a gene carried on the X chromosome. Bleeding results from a lack of coagulation factor VIII, a large and complex protein that circulates in complex with its carrier, von Willebrand factor (vWF).1 Severe hemophilia A (<1% of normal circulating levels) is associated with a high degree of mortality, due to spontaneous and trauma-induced, life-threatening and crippling bleeding episodes.2 Current treatment in the United States consists of infusion of plasma-derived or recombinant factor VIII in response to bleeding episodes.3 Such treatment fails to prevent cumulative joint damage, a major cause of hemophilia-associated morbidity.4 Availability of prophylactic treatment, which would reduce the number and severity of bleeding episodes and, consequently, would limit such joint damage, is limited by cost and the problems associated with repeated venous access. Other problems are associated with frequent replacement treatment, including the dangers of transmission of blood-borne infections derived from plasma used as a source of factor VIII or tissue culture or formulation components. These dangers are reduced, but not eliminated, by current manufacturing techniques. Furthermore, approximately 1 in 5 patients with severe hemophilia treated with recombinant or plasma-derived factor VIII develop inhibitory humoral immune responses. In some cases, new inhibitors have developed, apparently in response to unnatural modifications introduced during manufacture or purification.5 Gene therapy could circumvent most of these difficulties. In theory, a single injection of a vector encoding the factor VIII gene could provide constant plasma levels of factor in the long term. However, long-term expression after gene transfer of a systemically expressed protein in higher mammals has seldom been described. In some cases, a vector that appeared promising in a rodent model has not worked well in larger animals, for example, due to a massive immune response not seen in the rodent.6 An excellent review of early efforts at factor VIII gene therapy appeared in an earlier volume of this series.7 A summary of results from various in vivo experiments is shown in Table 1. This chapter will focus on results pertaining to studies using vectors based on murine retroviruses, including our own work.


2014 ◽  
Vol 133 (9) ◽  
pp. 1149-1159 ◽  
Author(s):  
Jonas Mengel-From ◽  
Mikael Thinggaard ◽  
Christine Dalgård ◽  
Kirsten Ohm Kyvik ◽  
Kaare Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document