Comprehensive analysis of cell therapy on chronic skin wound healing: a meta-analysis

2021 ◽  
Author(s):  
Yujie Dong ◽  
Qi Yang ◽  
Xiaojie Sun
2021 ◽  
pp. 100099
Author(s):  
Ana Clara Sans Salomão Brunow Ventura ◽  
Thalita de Paula ◽  
Jenifer Pendiuk Gonçalves ◽  
Bruna da Silva Soley ◽  
Ananda Beatriz Munhoz Cretella ◽  
...  

Author(s):  
Hwan June Kang ◽  
Nuozhou Chen ◽  
Biraja C. Dash ◽  
Henry C. Hsia ◽  
François Berthiaume

2021 ◽  
Vol 10 (24) ◽  
pp. 5947
Author(s):  
Nikolai N. Potekaev ◽  
Olga B. Borzykh ◽  
German V. Medvedev ◽  
Denis V. Pushkin ◽  
Marina M. Petrova ◽  
...  

Impaired wound healing is one of the unsolved problems of modern medicine, affecting patients’ quality of life and causing serious economic losses. Impaired wound healing can manifest itself in the form of chronic skin wounds or hypertrophic scars. Research on the biology and physiology of skin wound healing disorders is actively continuing, but, unfortunately, a single understanding has not been developed. The attention of clinicians to the biological and physiological aspects of wound healing in the skin is necessary for the search for new and effective methods of prevention and treatment of its consequences. In addition, it is important to update knowledge about genetic and non-genetic factors predisposing to impaired wound healing in order to identify risk levels and develop personalized strategies for managing such patients. Wound healing is a very complex process involving several overlapping stages and involving many factors. This thematic review focuses on the extracellular matrix of the skin, in particular its role in wound healing. The authors analyzed the results of fundamental research in recent years, finding promising potential for their transition into real clinical practice.


2011 ◽  
Vol 6 (3) ◽  
pp. 225-237 ◽  
Author(s):  
Christophe Helary ◽  
Mylène Zarka ◽  
Marie Madeleine Giraud-Guille

Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1520
Author(s):  
Hiromasa Tanno ◽  
Emi Kanno ◽  
Shiho Kurosaka ◽  
Yukari Oikawa ◽  
Takumi Watanabe ◽  
...  

Lactic acid bacteria (LAB) are known to have beneficial effects on immune responses when they are orally administered as bacterial products. Although the beneficial effects of LAB have been reported for the genera Lactobacillus and Lactococcus, little has been uncovered on the effects of the genus Enterococcus on skin wound-healing. In this study, we aimed to clarify the effect of heat-killed Enterococcus faecalis KH2 (heat-killed KH2) strain on the wound-healing process and to evaluate the therapeutic potential in chronic skin wounds. We analyzed percent wound closure, re-epithelialization, and granulation area, and cytokine and growth factor production. We found that heat-killed KH2 contributed to the acceleration of re-epithelialization and the formation of granulation tissue by inducing tumor necrosis factor-α, interleukin-6, basic fibroblast growth factor, transforming growth factor (TGF)-β1, and vascular endothelial growth factor production. In addition, heat-killed KH2 also improved wound closure, which was accompanied by the increased production of TGF-β1 in diabetic mice. Topical administration of heat-killed KH2 might have therapeutic potential for the treatment of chronic skin wounds in diabetes mellitus. In the present study, we concluded that heat-killed KH2 promoted skin wound-healing through the formation of granulation tissues and the production of inflammatory cytokines and growth factors.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Tian-Long Wang ◽  
Zi-Fei Zhou ◽  
Jun-Feng Liu ◽  
Xiao-Dong Hou ◽  
Zhi Zhou ◽  
...  

Abstract Background Skin injury and the resultant defects are common clinical problems, and usually lead to chronic skin ulcers and even life-threatening diseases. Copper, an essential trace element of human body, has been reported to promote the regeneration of skin by stimulating proliferation of endothelial cell and enhance angiogenesis. Results Herein, we have prepared a new donut-like metal–organic frameworks (MOF) of copper-nicotinic acid (CuNA) by a simple solvothermal reaction. The rough surface of CuNA is beneficial for loading/release basic fibroblast growth factor (bFGF). The CuNAs with/without bFGF are easily processed into a light-responsive composite hydrogel with GelMA, which not only show excellent mechanical properties, but also display superior biocompatibility, antibacterial ability and bioactivity. Moreover, in the in vivo full-thickness defect model of skin wound, the resultant CuNA-bFGF@GelMA hydrogels significantly accelerate the wound healing, by simultaneously inhibiting the inflammatory response, promoting the new blood vessels formation and the deposition of collagen and elastic fibers. Conclusions Considering the superior biocompatibility, antibacterial ability and bioactivity, the CuNA and its composite light-responsive hydrogel system will be promising in the applications of skin and even other tissue regeneration. Graphic abstract


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yongqing Zhao ◽  
Min Wang ◽  
Feng Liang ◽  
Jiannan Li

AbstractSkin wound healing is a multi-stage process that depends on the coordination of multiple cells and mediators. Chronic or non-healing wounds resulting from the dysregulation of this process represent a challenge for the healthcare system. For skin wound management, there are various approaches to tissue recovery. For decades, stem cell therapy has made outstanding achievements in wound regeneration. Three major types of stem cells, including embryonic stem cells, adult stem cells, and induced pluripotent stem cells, have been explored intensely. Mostly, mesenchymal stem cells are thought to be an extensive cell type for tissue repair. However, the limited cell efficacy and the underutilized therapeutic potential remain to be addressed. Exploring novel and advanced treatments to enhance stem cell efficacy is an urgent need. Diverse strategies are applied to maintain cell survival and increase cell functionality. In this study, we outline current approaches aiming to improve the beneficial outcomes of cell therapy to better grasp clinical cell transformation.


Sign in / Sign up

Export Citation Format

Share Document