Occurrence of Virulence and Antimicrobial Resistance Determinants in Vibrio harveyi Isolated from Marine Food Fish Cultured in Korea

Author(s):  
Liyana Arachchilage Dinithi S. De Silva ◽  
Masimbule Vidanalage Kasun Sameera Wickramanayake ◽  
Gang-Joon Heo
2020 ◽  
pp. 104697
Author(s):  
Ida C. Lundbäck ◽  
Fiona K. McDougall ◽  
Peter Dann ◽  
David J. Slip ◽  
Rachael Gray ◽  
...  

2007 ◽  
Vol 73 (20) ◽  
pp. 6566-6576 ◽  
Author(s):  
Moussa S. Diarra ◽  
Fred G. Silversides ◽  
Fatoumata Diarrassouba ◽  
Jane Pritchard ◽  
Luke Masson ◽  
...  

ABSTRACT The effects of feed supplementation with the approved antimicrobial agents bambermycin, penicillin, salinomycin, and bacitracin or a combination of salinomycin plus bacitracin were evaluated for the incidence and distribution of antibiotic resistance in 197 commensal Escherichia coli isolates from broiler chickens over 35 days. All isolates showed some degree of multiple antibiotic resistance. Resistance to tetracycline (68.5%), amoxicillin (61.4%), ceftiofur (51.3%), spectinomycin (47.2%), and sulfonamides (42%) was most frequent. The levels of resistance to streptomycin, chloramphenicol, and gentamicin were 33.5, 35.5, and 25.3%, respectively. The overall resistance levels decreased from day 7 to day 35 (P < 0.001). Comparing treatments, the levels of resistance to ceftiofur, spectinomycin, and gentamicin (except for resistance to bacitracin treatment) were significantly higher in isolates from chickens receiving feed supplemented with salinomycin than from the other feeds (P < 0.001). Using a DNA microarray analysis capable of detecting commonly found antimicrobial resistance genes, we characterized 104 tetracycline-resistant E. coli isolates from 7- to 28-day-old chickens fed different growth promoters. Results showed a decrease in the incidence of isolates harboring tet(B), bla TEM, sulI, and aadA and class 1 integron from days 7 to 35 (P < 0.01). Of the 84 tetracycline-ceftiofur-resistant E. coli isolates, 76 (90.5%) were positive for bla CMY-2. The proportions of isolates positive for sulI, aadA, and integron class 1 were significantly higher in salinomycin-treated chickens than in the control or other treatment groups (P < 0.05). These data demonstrate that multiantibiotic-resistant E. coli isolates can be found in broiler chickens regardless of the antimicrobial growth promoters used. However, the phenotype and the distribution of resistance determinants in E. coli can be modulated by feed supplementation with some of the antimicrobial agents used in broiler chicken production.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Lang Yang ◽  
Bing Lü ◽  
Quanyi Wang ◽  
Kaiying Wang ◽  
Yanfeng Lin ◽  
...  

ABSTRACT Shigella flexneri is a major cause of bacillary dysentery in Beijing, China. The genetic features and population structure of locally circulating clones remained unclear. In this study, we sequenced the genomes of 93 S. flexneri isolates from patients in Beijing from 2005 to 2018. Phylogenetic analysis revealed a predominant lineage comprised of ST100 isolates that had acquired an extensive repertoire of antimicrobial resistance determinants. A rapid local expansion of the largest clade of this lineage began in 2008 and gradually resulted in the dominance of serotype 2a. Other clades showed substantial evidence of interregional spread from other areas of China. Another lineage consisting of ST18 isolates was also identified and appeared to have persisted locally for nearly 6 decades. These findings suggest that S. flexneri epidemics in Beijing were caused by both local expansion and interregional transmission. IMPORTANCE Beijing is the largest transportation hub in China, with a highly mobile population. Shigella flexneri is a major cause of bacillary dysentery in Beijing. However, little is known about the genetic features and population structure of locally circulating S. flexneri clones. Whole-genome sequencing of 93 S. flexneri isolates revealed that S. flexneri epidemics in Beijing were predominantly caused by an ST100 clone. Interregional spread, rapid local expansion, and acquirement of antimicrobial resistance determinants have cocontributed to the epidemics of this clone. Another ST18 clone was also identified and showed long-term colonization in Beijing. Our study provides comprehensive insights into the population structure and evolutionary history of S. flexneri in Beijing.


Antibiotics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 308 ◽  
Author(s):  
Caoimhe T. Lynch ◽  
Helen Lynch ◽  
Sarah Burke ◽  
Kayleigh Hawkins ◽  
Colin Buttimer ◽  
...  

Campylobacteriosis is the leading cause of human bacterial gastroenteritis, very often associated with poultry consumption. Thermophilic Campylobacter (Campylobacter jejuni and Campylobacter coli) isolates (n = 158) recovered from broiler neck skin and caecal contents in Ireland over a one-year period, resistant to at least one of three clinically relevant antimicrobial classes, were screened for resistance determinants. All ciprofloxacin-resistant isolates (n = 99) harboured the C257T nucleotide mutation (conferring the Thr-86-Ile substitution) in conjunction with other synonymous and nonsynonymous mutations, which may have epidemiological value. The A2075G nucleotide mutation and amino acid substitutions in L4 and L22 were detected in all erythromycin-resistant isolates (n = 5). The tetO gene was detected in 100% (n = 119) of tetracycline-resistant isolates and three of which were found to harbour the mosaic tetracycline resistance gene tetO/32/O. Two streptomycin-resistant C. jejuni isolates (isolated from the same flock) harboured ant(6)-Ib, located in a multidrug resistance genomic island, containing aminoglycoside, streptothricin (satA) and tetracycline resistance genes (truncated tetO and mosaic tetO/32/O). The ant(6)-Ie gene was identified in two streptomycin-resistant C. coli isolates. This study highlights the widespread acquisition of antimicrobial resistance determinants among chicken-associated Campylobacter isolates, through horizontal gene transfer or clonal expansion of resistant lineages. The stability of such resistance determinants is compounded by the fluidity of mobile genetic element.


2006 ◽  
Vol 50 (11) ◽  
pp. 3861-3866 ◽  
Author(s):  
Ying-Tsong Chen ◽  
Hung-Yu Shu ◽  
Ling-Hui Li ◽  
Tsai-Lien Liao ◽  
Keh-Ming Wu ◽  
...  

ABSTRACT A plasmid containing the qnrS quinolone resistance determinant and the gene encoding the SHV-2 β-lactamase has been discovered from a clinical Klebsiella pneumoniae strain isolated in Taiwan. The complete 98-kb sequence of this plasmid, designated pK245, was determined by using a whole-genome shotgun approach. Transfer of pK245 conferred low-level resistance to fluoroquinolones in electroporant Escherichia coli epi300. The sequence of the immediate region surrounding qnrS in pK245 is nearly identical (>99% identity) to those of pAH0376 from Shigella flexneri and pINF5 from Salmonella enterica serovar Infantis, the two other qnrS-carrying plasmids reported to date, indicating a potential common origin. Other genes conferring resistance to aminoglycosides (aacC2, strA, and strB), chloramphenicol (catA2), sulfonamides (sul2), tetracycline (tetD), and trimethoprim (dfrA14) were also detected in pK245. The dfrA14 gene is carried on a class I integron. Several features of this plasmid, including three separate regions containing putative replicons, a partitioning-control system, and a type II restriction modification system, suggest that it may be able to replicate and adapt in a variety of hosts. Although no critical conjugative genes were detected, multiple insertion sequence elements were found scattered throughout pK245, and these may facilitate the dissemination of the antimicrobial resistance determinants. We conclude that pK245 is a chimera which acquired its multiple antimicrobial resistance determinants horizontally from different sources. The identification of pK245 plasmid expands the repertoire of the coexistence of quinolone and extended-spectrum-β-lactam resistance determinants in plasmids carried by various species of the family Enterobacteriaceae in different countries.


2018 ◽  
Vol 7 (5) ◽  
Author(s):  
Clay S. Crippen ◽  
Steven Huynh ◽  
William G. Miller ◽  
Craig T. Parker ◽  
Christine M. Szymanski

Antimicrobial resistance is a major problem worldwide. Understanding the interplay between drug-resistant pathogens, such as Acinetobacter baumannii and related species, potentially acting as environmental reservoirs is critical for preventing the spread of resistance determinants.


Sign in / Sign up

Export Citation Format

Share Document