scholarly journals The Role of Mouse Mesenchymal Stem Cells in Differentiation of Naive T-Cells into Anti-Inflammatory Regulatory T-Cell or Proinflammatory Helper T-Cell 17 Population

2012 ◽  
Vol 21 (6) ◽  
pp. 901-910 ◽  
Author(s):  
Eliska Svobodova ◽  
Magdalena Krulova ◽  
Alena Zajicova ◽  
Katerina Pokorna ◽  
Jana Prochazkova ◽  
...  
2019 ◽  
Vol 316 (6) ◽  
pp. H1345-H1353 ◽  
Author(s):  
Jiafa Ren ◽  
Steven D. Crowley

The contributions of T lymphocytes to the pathogenesis of salt-sensitive hypertension has been well established. Under hypertensive stimuli, naive T cells develop into different subsets, including Th1, Th2, Th17, Treg, and cytotoxic CD8+ T cells, depending on the surrounding microenviroment in organs. Distinct subsets of T cells may play totally different roles in tissue damage and hypertension. The underlying mechanisms by which hypertensive stimuli activate naive T cells involve many events and different organs, such as neoantigen presentation by dendritic cells, high salt concentration, and the milieu of oxidative stress in the kidney and vasculature. Infiltrating and activated T subsets in injured organs, in turn, exert considerable impacts on tissue dysfunction, including sodium retention in the kidney, vascular stiffness, and remodeling in the vasculature. Therefore, a thorough knowledge of T-cell actions in hypertension may provide novel insights into the development of new therapeutic strategies for patients with hypertension.


Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 25-26
Author(s):  
Jeanette Ampudia ◽  
Dalena Chu ◽  
Jana Badrani ◽  
Taylor Doherty ◽  
Stephen Connelly ◽  
...  

Introduction: CD6 is a T-cell costimulatory receptor that has been implicated in the pathogenesis of multiple autoimmune and inflammatory (AI) diseases. In GVHD, CD6 is expressed on reconstituting T cells soon after transplant (Rambaldi et al., 2019), including Th1 and Th17 cells which are both implicated in the induction and pathogenesis of acute GVHD (aGVHD). CD6 is highly expressed on these cells and promotes immune synapse formation, T-cell activation, and T-cell migration via interaction with its ligand activated leukocyte cell adhesion molecule (ALCAM). Furthermore, studies have demonstrated that ex-vivo depletion of CD6+ donor cells prior to hematopoietic cell transplantation (HCT) decreases the incidence of aGVHD (Soiffer et al., 1992; Soiffer et al., 1998), highlighting the importance of CD6. While the contribution of CD6 to T cell activation has been well described, less is known regarding the expression levels and role of CD6 on effector and memory T cells (Teff) which are prominent in all diseases including aGVHD. Consequently, the aim of this study was to determine the role of CD6 specifically on effector T cells, and further illuminate the mechanism of itolizumab, an anti-CD6 monoclonal antibody. Methods: Naïve T cells were enriched from frozen PBMCs via a naïve T cell magnetic separation kit (Stemcell). Naïve T cells were polarized towards a Th1 phenotype for 6 days with a Th1 differentiation cocktail (Stemcell) and CD3/CD28 T cell activator (Stemcell) and rested overnight prior to entering restimulation conditions. Naïve T cells were polarized towards a Th17 phenotype for 8 days with IL-6, IL-1β, TGF-β, IL-23, anti-IL-4 and IFN-γ, the CD3/CD28 T cell activator was used to activate the T cells. To re-stimulate differentiated T cells, anti-CD3 mAb and ALCAM-Fc or anti-CD3 mAb alone were coated on 48-well plates overnight at 4oC. Th1 or Th17 T cells were labeled with CFSE and seeded with isotype control or itolizumab for 72hrs. Cells were collected for flow cytometry analysis and supernatant collected for relevant cytokine detection. To assess surface levels of CD6, cryopreserved PBMCs were thawed and incubated with itolizumab or isotype at 37oC for specific timepoints. Following incubation, cells were washed and stored at 4oC for subsequent staining. All samples were stained at the same time and surface levels of CD6 was detected using a monoclonal anti-CD6 antibody that does not compete with itolizumab. Results: Blockade of the CD6 pathway, using itolizumab during restimulation of differentiated Teff cells in the presence of ALCAM, inhibited multiple effector functions including proliferation and changes in cell size. An average of a 40% decrease in CFSE proliferation was observed across multiple donors. Furthermore, treatment of Teff cells with itolizumab resulted in a significant decrease in expression level of T cell markers of activation and exhaustion such as CD25, PD-1 and Tim3. This effect was exclusively in the presence of ALCAM, indicating that the effect was specific to blockade of the CD6-ALCAM pathway. When levels of CD6 were assessed, CD45RO+ (Teff/mem) cells expressed higher levels than CD45RA+CD45RO- (Tnaive). Itolizumab treatment of in vitro generated CD45RO+ T cells inhibited this stimulation-induced increase in CD6 in a dose-dependent manner, suggesting that the drug may modulate surface CD6 expression as a mechanism separate from physical blockade of CD6. Conclusions: These findings are the first to characterize the CD6-ALCAM pathway as a key regulator of differentiated effector T-cell function. Modulation of activation markers and CD6 itself by itolizumab, suggest modulation of Teff activity by both direct and indirect inhibition of CD6 signaling. These data further support targeting the CD6-ALCAM pathway to inhibit both naïve and effector T cell populations in aGVHD. Disclosures Ampudia: Equillium: Current Employment, Current equity holder in publicly-traded company. Chu:Equillium: Current Employment, Current equity holder in publicly-traded company. Doherty:Equillium Inc.: Research Funding. Connelly:Equillium: Current Employment, Current equity holder in publicly-traded company, Membership on an entity's Board of Directors or advisory committees. Ng:Equillium: Current Employment, Current equity holder in publicly-traded company.


2021 ◽  
Vol 22 (3) ◽  
pp. 1375
Author(s):  
María Carmen Carceller ◽  
María Isabel Guillén ◽  
María Luisa Gil ◽  
María José Alcaraz

Adipose tissue represents an abundant source of mesenchymal stem cells (MSC) for therapeutic purposes. Previous studies have demonstrated the anti-inflammatory potential of adipose tissue-derived MSC (ASC). Extracellular vesicles (EV) present in the conditioned medium (CM) have been shown to mediate the cytoprotective effects of human ASC secretome. Nevertheless, the role of EV in the anti-inflammatory effects of mouse-derived ASC is not known. The current study has investigated the influence of mouse-derived ASC CM and its fractions on the response of mouse-derived peritoneal macrophages against lipopolysaccharide (LPS). CM and its soluble fraction reduced the release of pro-inflammatory cytokines, adenosine triphosphate and nitric oxide in stimulated cells. They also enhanced the migration of neutrophils or monocytes, in the absence or presence of LPS, respectively, which is likely related to the presence of chemokines, and reduced the phagocytic response. The anti-inflammatory effect of CM may be dependent on the regulation of toll-like receptor 4 expression and nuclear factor-κB activation. Our results demonstrate the anti-inflammatory effects of mouse-derived ASC secretome in mouse-derived peritoneal macrophages stimulated with LPS and show that they are not mediated by EV.


2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Qiuli Liu ◽  
Xiaoyong Chen ◽  
Chang Liu ◽  
Lijie Pan ◽  
Xinmei Kang ◽  
...  

AbstractLiver diseases with different pathogenesis share common pathways of immune-mediated injury. Chitinase-3-like protein 1 (CHI3L1) was induced in both acute and chronic liver injuries, and recent studies reported that it possesses an immunosuppressive ability. CHI3L1 was also expressed in mesenchymal stem cells (MSCs), thus we investigates the role of CHI3L1 in MSC-based therapy for immune-mediated liver injury here. We found that CHI3L1 was highly expressed in human umbilical cord MSCs (hUC-MSCs). Downregulating CHI3L1 mitigated the ability of hUC-MSCs to inhibit T cell activation, proliferation and inflammatory cytokine secretion in vitro. Using Concanavalin A (Con A)-induced liver injury mouse model, we found that silencing CHI3L1 significantly abrogated the hUC-MSCs-mediated alleviation of liver injury, accompanying by weakened suppressive effects on infiltration and activation of hepatic T cells, and secretion of pro-inflammatory cytokines. In addition, recombinant CHI3L1 (rCHI3L1) administration inhibited the proliferation and function of activated T cells, and alleviated the Con A-induced liver injury in mice. Mechanistically, gene set enrichment analysis showed that JAK/STAT signalling pathway was one of the most significantly enriched gene pathways in T cells co-cultured with hUC-MSCs with CHI3L1 knockdown, and further study revealed that CHI3L1 secreted by hUC-MSCs inhibited the STAT1/3 signalling in T cells by upregulating peroxisome proliferator-activated receptor δ (PPARδ). Collectively, our data showed that CHI3L1 was a novel MSC-secreted immunosuppressive factor and provided new insights into therapeutic treatment of immune-mediated liver injury.


Blood ◽  
1997 ◽  
Vol 90 (9) ◽  
pp. 3662-3672 ◽  
Author(s):  
Nobukazu Watanabe ◽  
Stephen C. De Rosa ◽  
Anthony Cmelak ◽  
Richard Hoppe ◽  
Leonore A. Herzenberg ◽  
...  

Abstract We investigated the representation of T cells in patients who had been treated for Hodgkin's disease (HD). We found a marked depletion in both CD4 and CD8 naive T-cell counts that persists up to 30 years after completion of treatment. In contrast, CD4 and CD8 memory T-cell subsets recovered to normal or above normal levels by 5 years posttreatment. Thus, the previously-reported long-term deficit in total CD4 T-cell counts after treatment for HD is due to specific depletion of naive T cells. Similarly, total CD8 T-cell counts return to normal by 5 years only because CD8 memory T cells expand to higher than normal levels. These findings suggest that the treatment (mediastinal irradiation) results in a longterm dysregulation of T-cell subset homeostasis. The profound depletion of naive T cells may explain the altered T-cell function in treated patients, including the poor response to immunization after treatment for HD. Further, in some individuals, we identified expansions of unusual subsets expressing low levels of CD8. Eight-color fluorescence-activated cell sorting analyses showed that these cells largely express CD8αα homodimers and CD57, consistent with the phenotype of potentially extrathymically derived T cells. In addition, these cells, both CD4+ and CD4−, are probably cytotoxic lymphocytes, as they express high levels of intracellular perforin. In adults treated for HD, an increased activity of extrathymic T-cell differentiation may partially compensate for the loss of thymic-derived T cells.


Science ◽  
2020 ◽  
Vol 367 (6475) ◽  
pp. eaay0524 ◽  
Author(s):  
Mohamed A. ElTanbouly ◽  
Yanding Zhao ◽  
Elizabeth Nowak ◽  
Jiannan Li ◽  
Evelien Schaafsma ◽  
...  

Negative checkpoint regulators (NCRs) temper the T cell immune response to self-antigens and limit the development of autoimmunity. Unlike all other NCRs that are expressed on activated T lymphocytes, V-type immunoglobulin domain-containing suppressor of T cell activation (VISTA) is expressed on naïve T cells. We report an unexpected heterogeneity within the naïve T cell compartment in mice, where loss of VISTA disrupted the major quiescent naïve T cell subset and enhanced self-reactivity. Agonistic VISTA engagement increased T cell tolerance by promoting antigen-induced peripheral T cell deletion. Although a critical player in naïve T cell homeostasis, the ability of VISTA to restrain naïve T cell responses was lost under inflammatory conditions. VISTA is therefore a distinctive NCR of naïve T cells that is critical for steady-state maintenance of quiescence and peripheral tolerance.


1992 ◽  
Vol 176 (5) ◽  
pp. 1431-1437 ◽  
Author(s):  
M Croft ◽  
D D Duncan ◽  
S L Swain

Because of the low frequency of T cells for any particular soluble protein antigen in unprimed animals, the requirements for naive T cell responses in specific antigens have not been clearly delineated and they have been difficult to study in vitro. We have taken advantage of mice transgenic for the V beta 3/V alpha 11 T cell receptor (TCR), which can recognize a peptide of cytochrome c presented by IEk. 85-90% of CD4+ T cells in these mice express the transgenic TCR, and we show that almost all such V beta 3/V alpha 11 receptor-positive cells have a phenotype characteristic of naive T cells, including expression of high levels of CD45RB, high levels of L-selectin (Mel-14), low levels of CD44 (Pgp-1), and secretion of interleukin 2 (IL-2) as the major cytokine. Naive T cells, separated on the basis of CD45RB high expression, gave vigorous responses (proliferation and IL-2 secretion) to peptide antigen presented in vitro by a mixed antigen-presenting cell population. At least 50% of the T cell population appeared to respond, as assessed by blast transformation, entry into G1, and expression of increased levels of CD44 by 24 h. Significant contributions to the response by contaminating memory CD4+ cells were ruled out by demonstrating that the majority of the CD45RB low, L-selectin low, CD44 high cells did not express the V beta 3/V alpha 11 TCR and responded poorly to antigen. We find that proliferation and IL-2 secretion of the naive CD4 cells is minimal when resting B cells present peptide antigen, and that both splenic and bone marrow-derived macrophages are weak stimulators. Naive T cells did respond well to high numbers of activated B cells. However, dendritic cells were the most potent stimulators of proliferation and IL-2 secretion at low cell numbers, and were far superior inducers of IL-2 at higher numbers. These studies establish that naive CD4 T cells can respond vigorously to soluble antigen and indicate that maximal stimulation can be achieved by presentation of antigen on dendritic cells. This model should prove very useful in further investigations of activation requirements and functional characteristics of naive helper T cells.


2016 ◽  
Vol 119 (suppl_1) ◽  
Author(s):  
Tania A Nevers ◽  
Ane Salvador ◽  
Francisco Velazquez ◽  
Mark Aronovitz ◽  
Robert Blanton

Background: Cardiac fibrogenesis is a major pathogenic factor that occurs in heart failure (HF) and results in contractile dysfunction and ventricular dilation. Recently, we showed that T cell deficient mice (TCRα -/- ) do not develop cardiac fibrosis (CF) and have preserved cardiac function in the thoracic aortic constriction (TAC) mouse model of pressure overload (PO). Specifically, CD4 + T cells are activated in the cardiac draining lymph nodes and infiltrate the LV, where the Th1 and Th17 effector T cell signature transcription factors are significantly upregulated as compared with control mice. However, the T cell subsets involved and the mechanisms by which they contribute to CF and pathogenesis of non-ischemic HF remains to be determined. Thus, we hypothesize that heart infiltrated effector T cells perpetuate the fibrotic response by regulating the differentiation and activation of extracellular matrix-producing cardiac myofibroblasts. Methods and Results: Naïve or effector T cells differentiated in vitro or isolated from mice undergoing TAC or Sham surgery were co-cultured with adult C57BL/6 cardiac fibroblasts (CFB). In contrast with naïve T cells, effector T cells and PO activated T cells strongly adhered to CFB and mediated fibroblast to myofibroblasts transition as depicted by immunofluorescence expression of SMAα. Effector T cell supernatants only slightly mediated this transition, indicating that effector T cells direct contact with CFB, rather than cytokine release is required to mediate CFB transformation. Adoptive transfer of effector, but not naïve T cells, into TCRα -/- recipient mice in the onset of TAC resulted in T cells infiltration into the left ventricle and increased CF. Conclusions: Our data indicate that CD4+ effector T cells directly interact with CFB to induce CF in response to PO induced CF. Future studies will determine the adhesion mechanisms regulating this crosstalk and evaluate the pro-fibrotic mechanisms induced and whether this is a T effector cell specific subset. These results will provide an attractive tool to counteract the inflammatory/fibrotic process as an alternative option for the treatment of CF in non- ischemic HF.


Sign in / Sign up

Export Citation Format

Share Document