scholarly journals Direct Comparison of Wharton's Jelly and Bone Marrow-Derived Mesenchymal Stromal Cells to Enhance Engraftment of Cord Blood CD34+Transplants

2015 ◽  
Vol 24 (22) ◽  
pp. 2649-2659 ◽  
Author(s):  
Mark van der Garde ◽  
Melissa van Pel ◽  
Jose Eduardo Millán Rivero ◽  
Alice de Graaf-Dijkstra ◽  
Manon C. Slot ◽  
...  
2014 ◽  
Vol 93 (5) ◽  
pp. 384-391 ◽  
Author(s):  
Luisa Milazzo ◽  
Francesca Vulcano ◽  
Alessandra Barca ◽  
Giampiero Macioce ◽  
Emanuela Paldino ◽  
...  

Cytotherapy ◽  
2012 ◽  
Vol 14 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Sudha Balasubramanian ◽  
Parvathy Venugopal ◽  
Swathi Sundarraj ◽  
Zubaidah Zakaria ◽  
Anish Sen Majumdar ◽  
...  

FEBS Open Bio ◽  
2016 ◽  
Vol 6 (11) ◽  
pp. 1054-1066 ◽  
Author(s):  
Claire Mennan ◽  
Sharon Brown ◽  
Helen McCarthy ◽  
Eleni Mavrogonatou ◽  
Dimitris Kletsas ◽  
...  

2018 ◽  
Vol 27 (1) ◽  
pp. 117-129 ◽  
Author(s):  
Melania Lo Iacono ◽  
Eleonora Russo ◽  
Rita Anzalone ◽  
Elena Baiamonte ◽  
Giusi Alberti ◽  
...  

Wharton’s jelly mesenchymal stromal cells (WJ-MSCs) have been recently exploited as a feeder layer in coculture systems to expand umbilical cord blood–hematopoietic stem/progenitor cells (UCB-HSPCs). Here, we investigated the role of WJ-MSCs in supporting ex vivo UCB-HSPC expansion either when cultured in direct contact (DC) with WJ-MSCs or separated by a transwell system or in the presence of WJ-MSC–conditioned medium. We found, in short-term culture, a greater degree of expansion of UCB-CD34+ cells in a DC system (15.7 ± 4.1-fold increase) with respect to the other conditions. Moreover, in DC, we evidenced two different CD34+ cell populations (one floating and one adherent to WJ-MSCs) with different phenotypic and functional characteristics. Both multipotent CD34+/CD38− and lineage-committed CD34+/CD38+ hematopoietic progenitors were expanded in a DC system. The former were significantly more represented in the adherent cell fraction than in the floating one (18.7 ± 11.2% vs. 9.7 ± 7.9% over the total CD34+ cells). Short-term colony forming unit (CFU) assays showed that HSPCs adherent to the stromal layer were able to generate a higher frequency of immature colonies (CFU-granulocyte/macrophage and burst-forming unit erythroid/large colonies) with respect to the floating cells. In the attempt to identify molecules that may play a role in supporting the observed ex vivo HSPC growth, we performed secretome analyses. We found a number of proteins involved in the HSPC homing, self-renewal, and differentiation in all tested conditions. It is important to note that a set of sixteen proteins, which are only in part reported to be expressed in any hematopoietic niche, were exclusively found in the DC system secretome. In conclusion, WJ-MSCs allowed a significant ex vivo expansion of multipotent as well as committed HSPCs. This may be relevant for future clinical applications.


Sign in / Sign up

Export Citation Format

Share Document