Double Transgenic Zebrafish for Somatotrophic Axis: A Tool for Muscle Development and Growth Studies

Zebrafish ◽  
2015 ◽  
Vol 12 (3) ◽  
pp. 268-269 ◽  
Author(s):  
Ana C. Silva ◽  
Daniela V. Almeida ◽  
Marcio A. Figueiredo ◽  
Luis F. Marins
2019 ◽  
Vol 28 (24) ◽  
pp. 4186-4196 ◽  
Author(s):  
Mo Zhao ◽  
Lindsay Smith ◽  
Jonathan Volpatti ◽  
Lacramioara Fabian ◽  
James J Dowling

Abstract Dynamin 2 (DNM2) encodes a ubiquitously expressed large GTPase with membrane fission capabilities that participates in the endocytosis of clathrin-coated vesicles. Heterozygous mutations in DNM2 are associated with two distinct neuromuscular disorders, Charcot–Marie–Tooth disease (CMT) and autosomal dominant centronuclear myopathy (CNM). Despite extensive investigations in cell culture, the role of dynamin 2 in normal muscle development is poorly understood and the consequences of DNM2 mutations at the molecular level in vivo are not known. To address these gaps in knowledge, we developed transgenic zebrafish expressing either wild-type dynamin 2 or dynamin 2 with either a CNM or CMT mutation. Taking advantage of the live imaging capabilities of the zebrafish embryo, we establish the localization of wild-type and mutant dynamin 2 in vivo, showing for the first time distinctive dynamin 2 subcellular compartments. Additionally, we demonstrate that CNM-related DNM2 mutations are associated with protein mislocalization and aggregation. Lastly, we define core phenotypes associated with our transgenic mutant fish, including impaired motor function and altered muscle ultrastructure, making them the ideal platform for drug screening. Overall, using the power of the zebrafish, we establish novel insights into dynamin 2 localization and dynamics and provide the necessary groundwork for future studies examining dynamin 2 pathomechanisms and therapy development.


2019 ◽  
Vol 28 (15) ◽  
pp. 2549-2560 ◽  
Author(s):  
Caroline Jirka ◽  
Jasmine H Pak ◽  
Claire A Grosgogeat ◽  
Michael Mario Marchetii ◽  
Vandana A Gupta

Abstract Nemaline myopathy (NM) is the most common form of congenital myopathy that results in hypotonia and muscle weakness. This disease is clinically and genetically heterogeneous, but three recently discovered genes in NM encode for members of the Kelch family of proteins. Kelch proteins act as substrate-specific adaptors for Cullin 3 (CUL3) E3 ubiquitin ligase to regulate protein turnover through the ubiquitin-proteasome machinery. Defects in thin filament formation and/or stability are key molecular processes that underlie the disease pathology in NM; however, the role of Kelch proteins in these processes in normal and diseases conditions remains elusive. Here, we describe a role of NM causing Kelch protein, KLHL41, in premyofibil-myofibil transition during skeletal muscle development through a regulation of the thin filament chaperone, nebulin-related anchoring protein (NRAP). KLHL41 binds to the thin filament chaperone NRAP and promotes ubiquitination and subsequent degradation of NRAP, a process that is critical for the formation of mature myofibrils. KLHL41 deficiency results in abnormal accumulation of NRAP in muscle cells. NRAP overexpression in transgenic zebrafish resulted in a severe myopathic phenotype and absence of mature myofibrils demonstrating a role in disease pathology. Reducing Nrap levels in KLHL41 deficient zebrafish rescues the structural and function defects associated with disease pathology. We conclude that defects in KLHL41-mediated ubiquitination of sarcomeric proteins contribute to structural and functional deficits in skeletal muscle. These findings further our understanding of how the sarcomere assembly is regulated by disease-causing factors in vivo, which will be imperative for developing mechanism-based specific therapeutic interventions.


Genome ◽  
2011 ◽  
Vol 54 (12) ◽  
pp. 973-985 ◽  
Author(s):  
Chris M. Lukowski ◽  
Danna Lynne Drummond ◽  
Andrew J. Waskiewicz

Ladybird (Lbx) homeodomain transcription factors function in neural and muscle development—roles conserved from Drosophila to vertebrates. Lbx expression in mice specifies neural cell types, including dorsally located interneurons and association neurons, within the neural tube. Little, however, is known about the regulation of vertebrate lbx family genes. Here we describe the expression pattern of three zebrafish ladybird genes via mRNA in situ hybridization. Zebrafish lbx genes are expressed in distinct but overlapping regions within the developing neural tube, with strong expression within the hindbrain and spinal cord. The Hox family of transcription factors, in cooperation with cofactors such as Pbx and Meis, regulate hindbrain segmentation during embryogenesis. We have identified a novel regulatory interaction in which lbx1 genes are strongly downregulated in Pbx-depleted embryos. Further, we have produced a transgenic zebrafish line expressing dTomato and EGFP under the control of an lbx1b enhancer—a useful tool to acertain neuron location, migration, and morphology. Using this transgenic strain, we have identified a minimal neural lbx1b enhancer that contains key regulatory elements for expression of this transcription factor.


2009 ◽  
Vol 161 (1) ◽  
pp. 67-72 ◽  
Author(s):  
Ana Lupe Motta Studzinski ◽  
Daniela Volcan Almeida ◽  
Carlos Frederico Ceccon Lanes ◽  
Márcio de Azevedo Figueiredo ◽  
Luis Fernando Marins

eLife ◽  
2018 ◽  
Vol 7 ◽  
Author(s):  
Genevieve C Kendall ◽  
Sarah Watson ◽  
Lin Xu ◽  
Collette A LaVigne ◽  
Whitney Murchison ◽  
...  

Alveolar rhabdomyosarcoma is a pediatric soft-tissue sarcoma caused by PAX3/7-FOXO1 fusion oncogenes and is characterized by impaired skeletal muscle development. We developed human PAX3-FOXO1 -driven zebrafish models of tumorigenesis and found that PAX3-FOXO1 exhibits discrete cell lineage susceptibility and transformation. Tumors developed by 1.6–19 months and were primitive neuroectodermal tumors or rhabdomyosarcoma. We applied this PAX3-FOXO1 transgenic zebrafish model to study how PAX3-FOXO1 leverages early developmental pathways for oncogenesis and found that her3 is a unique target. Ectopic expression of the her3 human ortholog, HES3, inhibits myogenesis in zebrafish and mammalian cells, recapitulating the arrested muscle development characteristic of rhabdomyosarcoma. In patients, HES3 is overexpressed in fusion-positive versus fusion-negative tumors. Finally, HES3 overexpression is associated with reduced survival in patients in the context of the fusion. Our novel zebrafish rhabdomyosarcoma model identifies a new PAX3-FOXO1 target, her3/HES3, that contributes to impaired myogenic differentiation and has prognostic significance in human disease.


2018 ◽  
Author(s):  
Caroline Jirka ◽  
Jasmine H Pak ◽  
Claire A Grosgogeat ◽  
Michael M Marchetti ◽  
Vandana A Gupta

Nemaline myopathy (NM) is the most common form of congenital myopathy that results in hypotonia and muscle weakness. This disease is clinically and genetically heterogeneous, but three recently discovered genes in NM encode for members of the Kelch family of proteins. Kelch proteins act as substrate-specific-adapters for CUL3 E3 ubiquitin ligase to regulate protein turn-over through the ubiquitin-proteasome machinery. Defects in thin filament formation and/or stability are key molecular processes that underlie the disease pathology in NM, however, the role of Kelch proteins in these processes in normal and diseases conditions remains elusive in vivo. Here, we describe a role of NM causing Kelch protein, KLHL41, in premyofibil-myofibil transition during skeletal muscle development through a regulation of the thin filament chaperone, NRAP. KLHL41 binds to the thin filament chaperone NRAP and promotes ubiquitination and subsequent degradation of NRAP, a process that is critical for the formation of mature myofibrils. KLHL41 deficiency results in abnormal accumulation of NRAP in muscle cells. NRAP overexpression in transgenic zebrafish resulted in a severe myopathic phenotype and absence of mature myofibrils demonstrating a role in disease pathology. Reducing Nrap levels in KLHL41 deficient zebrafish rescues the structural and function defects associated with disease pathology. We conclude that defects in KLHL41-mediated ubiquitination of sarcomeric protein contribute to structural and functional deficits in skeletal muscle. These findings further our understanding of how the sarcomere assembly is regulated by disease causing factors in vivo, which will be imperative for developing mechanism-based specific therapeutic interventions.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Inês M Tenente ◽  
Madeline N Hayes ◽  
Myron S Ignatius ◽  
Karin McCarthy ◽  
Marielle Yohe ◽  
...  

Rhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has been that expression of these factors likely reflects the target cell of transformation rather than being required for continued tumor growth. Here, we used a transgenic zebrafish model to show that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory elements to alter transcription of genes that regulate muscle development and cell cycle progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD convergence on common transcriptional targets to regulate human RMS growth.


Author(s):  
C. Uphoff ◽  
C. Nyquist-Battie ◽  
T.B. Cole

Ultrastructural alterations of skeletal muscle have been observed in adult chronic alcoholic patients. However, no such study has been performed on individuals prenatally exposed to ethanol. In order to determine if ethanol exposure in utero in the latter stages of muscle development was deleterious, skeletal muscle was obtained from newborn guinea pigs treated in the following manner. Six Hartly strain pregnant guinea pigs were randomly assigned to either the ethanol or the pair-intubated groups. Twice daily the 3 ethanol-treated animals were intubated with Ensure (Ross Laboratories) liquid diet containing 30% ethanol (6g/Kg pre-pregnant body weight per day) from day 35 of gestation until parturition at day 70±1 day. Serum ethanol levels were determined at 1 hour post-intubation by the Sigma alcohol test kit. For pair-intubation the Ensure diet contained sucrose substituted isocalorically for ethanol. Both food and water intake were monitored.


1986 ◽  
Vol 113 (4_Suppl) ◽  
pp. S93-S97 ◽  
Author(s):  
A. FERRANDEZ ◽  
E. MAYAYO ◽  
M. RODRIGUEZ ◽  
J.M. ARNAL ◽  
J. CARO ◽  
...  

Abstract The differences existing among some european longitudinal growth studies make it necessary to be cautious in the use of standards constructed on different populations. The improvement of the environmental conditions during the last 20 years is probably the most important cause of the "catch-up" phenomenon of the spanish stature. It is probable that racial characteristics also play a role, even in the same country as can be appreciated on comparing two spanish longitudinal studies based on children originary from different regions. All of wich indicates the need to use own standards in those countries wich, like ours, have lived through a period of intenses changes. Even exploratory studies of regional differences in the same country seem necesary.


2013 ◽  
pp. 1-1
Author(s):  
Benjamin D Weger ◽  
Meltem Weger ◽  
Nicolas Diotel ◽  
Michael Nusser ◽  
Sepand Rastegar ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document