Pbx-dependent regulation of lbx gene expression in developing zebrafish embryos

Genome ◽  
2011 ◽  
Vol 54 (12) ◽  
pp. 973-985 ◽  
Author(s):  
Chris M. Lukowski ◽  
Danna Lynne Drummond ◽  
Andrew J. Waskiewicz

Ladybird (Lbx) homeodomain transcription factors function in neural and muscle development—roles conserved from Drosophila to vertebrates. Lbx expression in mice specifies neural cell types, including dorsally located interneurons and association neurons, within the neural tube. Little, however, is known about the regulation of vertebrate lbx family genes. Here we describe the expression pattern of three zebrafish ladybird genes via mRNA in situ hybridization. Zebrafish lbx genes are expressed in distinct but overlapping regions within the developing neural tube, with strong expression within the hindbrain and spinal cord. The Hox family of transcription factors, in cooperation with cofactors such as Pbx and Meis, regulate hindbrain segmentation during embryogenesis. We have identified a novel regulatory interaction in which lbx1 genes are strongly downregulated in Pbx-depleted embryos. Further, we have produced a transgenic zebrafish line expressing dTomato and EGFP under the control of an lbx1b enhancer—a useful tool to acertain neuron location, migration, and morphology. Using this transgenic strain, we have identified a minimal neural lbx1b enhancer that contains key regulatory elements for expression of this transcription factor.

2020 ◽  
Author(s):  
Shiri Kult ◽  
Tsviya Olender ◽  
Marco Osterwalder ◽  
Sharon Krief ◽  
Ronnie Blecher-Gonen ◽  
...  

AbstractThe connection between different tissues is vital for the development and function of any organs and systems. In the musculoskeletal system, the attachment of elastic tendons to stiff bones poses a mechanical challenge that is solved by the formation of a transitional tissue, which allows the transfer of muscle forces to the skeleton without tearing. Here, we show that tendon-to-bone attachment cells are bi-fated, activating a mixture of chondrocyte and tenocyte transcriptomes, which is regulated by sharing regulatory elements with these cells and by Krüppel-like factors transcription factors (KLF).To uncover the molecular identity of attachment cells, we first applied high-throughput RNA sequencing to murine humeral attachment cells. The results, which were validated by in situ hybridization and single-molecule in situ hybridization, reveal that attachment cells express hundreds of chondrogenic and tenogenic genes. In search for the underlying mechanism allowing these cells to express these genes, we performed ATAC sequencing and found that attachment cells share a significant fraction of accessible intergenic chromatin areas with either tenocytes or chondrocytes. Epigenomic analysis further revealed transcriptional enhancer signatures for the majority of these regions. We then examined a subset of these regions using transgenic mouse enhancer reporter. Results verified the shared activity of some of these enhancers, supporting the possibility that the transcriptome of attachment cells is regulated by enhancers with shared activities in tenocytes or chondrocytes. Finally, integrative chromatin and motif analyses, as well as the transcriptome data, indicated that KLFs are regulators of attachment cells. Indeed, blocking the expression of Klf2 and Klf4 in the developing limb mesenchyme led to abnormal differentiation of attachment cells, establishing these factors as key regulators of the fate of these cells.In summary, our findings show how the molecular identity of bi-fated attachment cells enables the formation of the unique transitional tissue that connect tendon to bone. More broadly, we show how mixing the transcriptomes of two cell types through shared enhancers and a dedicated set of transcription factors can lead to the formation of a new cell fate that connects them.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Inês M Tenente ◽  
Madeline N Hayes ◽  
Myron S Ignatius ◽  
Karin McCarthy ◽  
Marielle Yohe ◽  
...  

Rhabdomyosarcoma (RMS) is a pediatric malignacy of muscle with myogenic regulatory transcription factors MYOD and MYF5 being expressed in this disease. Consensus in the field has been that expression of these factors likely reflects the target cell of transformation rather than being required for continued tumor growth. Here, we used a transgenic zebrafish model to show that Myf5 is sufficient to confer tumor-propagating potential to RMS cells and caused tumors to initiate earlier and have higher penetrance. Analysis of human RMS revealed that MYF5 and MYOD are mutually-exclusively expressed and each is required for sustained tumor growth. ChIP-seq and mechanistic studies in human RMS uncovered that MYF5 and MYOD bind common DNA regulatory elements to alter transcription of genes that regulate muscle development and cell cycle progression. Our data support unappreciated and dominant oncogenic roles for MYF5 and MYOD convergence on common transcriptional targets to regulate human RMS growth.


Development ◽  
1994 ◽  
Vol 120 (4) ◽  
pp. 957-971 ◽  
Author(s):  
M. Goulding ◽  
A. Lumsden ◽  
A.J. Paquette

The segmented mesoderm in vertebrates gives rise to a variety of cell types in the embryo including the axial skeleton and muscle. A number of transcription factors containing a paired domain (Pax proteins) are expressed in the segmented mesoderm during embryogenesis. These include Pax-3 and a closely related gene, Pax-7, both of which are expressed in the segmental plate and in the dermomyotome. In this paper, we show that signals from the notochord pattern the expression of Pax-3, Pax-7 and Pax-9 in somites and the subsequent differentiation of cell types that arise from the somitic mesoderm. We directly assess the role of the Pax-3 gene in the differentiation of cell types derived from the dermomyotome by analyzing the development of muscle in splotch mouse embryos which lack a functional Pax-3 gene. A population of Pax-3-expressing cells derived from the dermomyotome that normally migrate into the limb are absent in homozygous splotch embryos and, as a result, limb muscles are lost. No abnormalities were detected in the trunk musculature of splotch embryos indicating that Pax-3 is necessary for the development of the limb but not trunk muscle.


Development ◽  
2002 ◽  
Vol 129 (10) ◽  
pp. 2459-2472 ◽  
Author(s):  
John R. Timmer ◽  
Charlotte Wang ◽  
Lee Niswander

In the spinal neural tube, populations of neuronal precursors that express a unique combination of transcription factors give rise to specific classes of neurons at precise locations along the dorsoventral axis. Understanding the patterning mechanisms that generate restricted gene expression along the dorsoventral axis is therefore crucial to understanding the creation of diverse neural cell types. Bone morphogenetic proteins (BMPs) and other transforming growth factor β (TGFβ) proteins are expressed by the dorsal-most cells of the neural tube (the roofplate) and surrounding tissues, and evidence indicates that they play a role in assigning cell identity. We have manipulated the level of BMP signaling in the chicken neural tube to show that BMPs provide patterning information to both dorsal and intermediate cells. BMP regulation of the expression boundaries of the homeobox proteins Pax6, Dbx2 and Msx1 generates precursor populations with distinct developmental potentials. Within the resulting populations, thresholds of BMP act to set expression domain boundaries of developmental regulators of the homeobox and basic helix-loop-helix (bHLH) families, ultimately leading to the generation of a diversity of differentiated neural cell types. This evidence strongly suggests that BMPs are the key regulators of dorsal cell identity in the spinal neural tube.


2019 ◽  
Author(s):  
Ross C. Hardison ◽  
Yu Zhang ◽  
Cheryl A. Keller ◽  
Guanjue Xiang ◽  
Elisabeth Heuston ◽  
...  

SummaryMembers of the GATA family of transcription factors play key roles in the differentiation of specific cell lineages by regulating the expression of target genes. Three GATA factors play distinct roles in hematopoietic differentiation. In order to better understand how these GATA factors function to regulate genes throughout the genome, we are studying the epigenomic and transcriptional landscapes of hematopoietic cells in a model-driven, integrative fashion. We have formed the collaborative multi-lab VISION project to conduct ValIdated Systematic IntegratiON of epigenomic data in mouse and human hematopoiesis. The epigenomic data included nuclease accessibility in chromatin, CTCF occupancy, and histone H3 modifications for twenty cell types covering hematopoietic stem cells, multilineage progenitor cells, and mature cells across the blood cell lineages of mouse. The analysis used the Integrative and Discriminative Epigenome Annotation System (IDEAS), which learns all common combinations of features (epigenetic states) simultaneously in two dimensions - along chromosomes and across cell types. The result is a segmentation that effectively paints the regulatory landscape in readily interpretable views, revealing constitutively active or silent loci as well as the loci specifically induced or repressed in each stage and lineage. Nuclease accessible DNA segments in active chromatin states were designated candidate cis-regulatory elements in each cell type, providing one of the most comprehensive registries of candidate hematopoietic regulatory elements to date. Applications of VISION resources are illustrated for regulation of genes encoding GATA1, GATA2, GATA3, and Ikaros. VISION resources are freely available from our website http://usevision.org.


2019 ◽  
Author(s):  
Hongye WANG ◽  
Liu Yihai ◽  
Wei Xiyi ◽  
cheng cao ◽  
Hu Tingting

Abstract The cardiotoxicity of isoniazid on zebrafish embryos and its underlying mechanism remained unclear. Here, we exposed zebrafish embryos at 4 hours post fertilization to different levels of isoniazid and recorded the morphology and number of malformed and dead embryos under the microscope. The high concentration of isoniazid group showed more malformed and dead embryos compared with low dose of isoniazid group and control group. Besides, the morphology of heart and its alteration were visualized using the transgenic zebrafish (cmlc2: GFP) and confirmed by in situ hybridization. The negative effects of isoniazid on the developing heart were characterized by lower heart rate and more heart looping disorders. Mechanistically, PCR showed decreased expression of heart-specific transcription factors exposed to isoniazid. Oxidative stress was induced by Isoniazid in cardiomyocytes, mediated by decreased activity of CAT and SOD, which could be rescued by ROS scavenger. In conclusion, we demonstrated that isoniazid lead to heart looping disturbance by downregulating cardiac specific transcription factors and inducing cardiomyocytes apoptosis.


Author(s):  
Alexandra Maslova ◽  
Ricardo N. Ramirez ◽  
Ke Ma ◽  
Hugo Schmutz ◽  
Chendi Wang ◽  
...  

SUMMARYThe mammalian genome contains several million cis-regulatory elements, whose differential activity marked by open chromatin determines organogenesis and differentiation. This activity is itself embedded in the DNA sequence, decoded by sequence-specific transcription factors. Leveraging a granular ATAC-seq atlas of chromatin activity across 81 immune cell-types we show that a convolutional neural network (“AI-TAC”) can learn to infer cell-type-specific chromatin activity solely from the DNA sequence. AI-TAC does so by rediscovering, with astonishing precision, binding motifs for known regulators, and some unknown ones, mapping them with high concordance to positions validated by ChIP-seq data. AI-TAC also uncovers combinatorial influences, establishing a hierarchy of transcription factors (TFs) and their interactions involved in immunocyte specification, with intriguingly different strategies between lineages. Mouse-trained AI-TAC can parse human DNA, revealing a strikingly similar ranking of influential TFs. Thus, Deep Learning can reveal the regulatory syntax that drives the full differentiative complexity of the immune system.


Development ◽  
2001 ◽  
Vol 128 (22) ◽  
pp. 4623-4633 ◽  
Author(s):  
Da-Zhi Wang ◽  
M. Renee Valdez ◽  
John McAnally ◽  
James Richardson ◽  
Eric N. Olson

Members of the MEF2 family of transcription factors are upregulated during skeletal muscle differentiation and cooperate with the MyoD family of myogenic basic helix-loop-helix (bHLH) transcription factors to control the expression of muscle-specific genes. To determine the mechanisms that regulate MEF2 gene expression during skeletal muscle development, we analyzed the mouse Mef2c gene for cis-regulatory elements that direct expression in the skeletal muscle lineage in vivo. We describe a skeletal muscle-specific control region for Mef2c that is sufficient to direct lacZ reporter gene expression in a pattern that recapitulates that of the endogenous Mef2c gene in skeletal muscle during pre- and postnatal development. This control region is a direct target for the binding of myogenic bHLH and MEF2 proteins. Mutagenesis of the Mef2c control region shows that a binding site for myogenic bHLH proteins is essential for expression at all stages of skeletal muscle development, whereas an adjacent MEF2 binding site is required for maintenance but not for initiation of Mef2c transcription. Our findings reveal the existence of a regulatory circuit between these two classes of transcription factors that induces, amplifies and maintains their expression during skeletal muscle development.


2013 ◽  
Vol 450 (1) ◽  
pp. 199-208 ◽  
Author(s):  
Patricia García-Sanz ◽  
Antonio Fernández-Pérez ◽  
Mario Vallejo

During embryonic development, the aristaless-type homeodomain protein Alx3 is expressed in the forehead mesenchyme and contributes to the regulation of craniofacial development. In the adult, Alx3 is expressed in pancreatic islets where it participates in the control of glucose homoeostasis. In the present study, we investigated the transcriptional regulation of Alx3 gene expression in these two cell types. We found that the Alx3 promoter contains two E-box regulatory elements, named EB1 and EB2, that provide binding sites for the basic helix–loop–helix transcription factors Twist1, E47, USF (upstream stimulatory factor) 1 and USF2. In primary mouse embryonic mesenchymal cells isolated from the forehead, EB2 is bound by Twist1, whereas EB1 is bound by USF1 and USF2. Integrity of both EB1 and EB2 is required for Twist1-mediated transactivation of the Alx3 promoter, even though Twist1 does not bind to EB1, indicating that binding of USF1 and USF2 to this element is required for Twist1-dependent Alx3 promoter activity. In contrast, in pancreatic islet insulin-producing cells, the integrity of EB2 is not required for proximal promoter activity. The results of the present study indicate that USF1 and USF2 are important regulatory factors for Alx3 gene expression in different cell types, whereas Twist1 contributes to transcriptional transactivation in mesenchymal, but not in pancreatic, cells.


2020 ◽  
Author(s):  
Jie Ni ◽  
Hongye Wang ◽  
Wei Xiyi ◽  
Kangjie Shen ◽  
Yeqin Sha ◽  
...  

Abstract Background: The cardiotoxicity of isoniazid on zebrafish embryos and its underlying mechanism is unclear. Methods: Here, we exposed zebrafish embryos at 4 hours post-fertilization to different levels of isoniazid and recorded the morphology and number of malformed and dead embryos under the microscope. Results: The high concentration of isoniazid group showed more malformed and dead embryos than the low concentration of isoniazid group and control group. The morphology of the heart and its alteration were visualized using transgenic zebrafish (cmlc2: GFP) and confirmed by in situ hybridization. The negative effects of isoniazid on the developing heart were characterized by lower heart rate and more heart looping disorders. Mechanistically, PCR showed decreased expression of heart-specific transcription factors when exposed to isoniazid. Oxidative stress was induced by isoniazid in cardiomyocytes, mediated by decreased activities of catalase and superoxide dismutase, which were rescued by scavengers of reactive oxygen species. Conclusion: In conclusion, this study demonstrated that isoniazid led to heart looping disturbance by the downregulation of cardiac-specific transcription factors and induction of cardiomyocyte apoptosis.


Sign in / Sign up

Export Citation Format

Share Document