scholarly journals Identification and Characterization of ART-27, a Novel Coactivator for the Androgen Receptor N Terminus

2002 ◽  
Vol 13 (2) ◽  
pp. 670-682 ◽  
Author(s):  
Steven M. Markus ◽  
Samir S. Taneja ◽  
Susan K. Logan ◽  
Wenhui Li ◽  
Susan Ha ◽  
...  

The androgen receptor (AR) is a ligand-regulated transcription factor that stimulates cell growth and differentiation in androgen-responsive tissues. The AR N terminus contains two activation functions (AF-1a and AF-1b) that are necessary for maximal transcriptional enhancement by the receptor; however, the mechanisms and components regulating AR transcriptional activation are not fully understood. We sought to identify novel factors that interact with the AR N terminus from an androgen-stimulated human prostate cancer cell library using a yeast two-hybrid approach designed to identify proteins that interact with transcriptional activation domains. A 157-amino acid protein termed ART-27 was cloned and shown to interact predominantly with the AR153–336, containing AF-1a and a part of AF-1b, localize to the nucleus and increase the transcriptional activity of AR when overexpressed in cultured mammalian cells. ART-27 also enhanced the transcriptional activation by AR153–336 fused to the LexA DNA-binding domain but not other AR N-terminal subdomains, suggesting that ART-27 exerts its effect via an interaction with a defined region of the AR N terminus. ART-27 interacts with AR in nuclear extracts from LNCaP cells in a ligand-independent manner. Interestingly, velocity gradient sedimentation of HeLa nuclear extracts suggests that native ART-27 is part of a multiprotein complex. ART-27 is expressed in a variety of human tissues, including sites of androgen action such as prostate and skeletal muscle, and is conserved throughout evolution. Thus, ART-27 is a novel cofactor that interacts with the AR N terminus and plays a role in facilitating receptor-induced transcriptional activation.

1994 ◽  
Vol 14 (10) ◽  
pp. 7013-7024 ◽  
Author(s):  
H Xiao ◽  
A Pearson ◽  
B Coulombe ◽  
R Truant ◽  
S Zhang ◽  
...  

Acidic transcriptional activation domains function well in both yeast and mammalian cells, and some have been shown to bind the general transcription factors TFIID and TFIIB. We now show that two acidic transactivators, herpes simplex virus VP16 and human p53, directly interact with the multisubunit human general transcription factor TFIIH and its Saccharomyces cerevisiae counterpart, factor b. The VP16- and p53-binding domains in these factors lie in the p62 subunit of TFIIH and in the homologous subunit, TFB1, of factor b. Point mutations in VP16 that reduce its transactivation activity in both yeast and mammalian cells weaken its binding to both yeast and human TFIIH. This suggests that binding of activation domains to TFIIH is an important aspect of transcriptional activation.


1994 ◽  
Vol 14 (10) ◽  
pp. 7013-7024 ◽  
Author(s):  
H Xiao ◽  
A Pearson ◽  
B Coulombe ◽  
R Truant ◽  
S Zhang ◽  
...  

Acidic transcriptional activation domains function well in both yeast and mammalian cells, and some have been shown to bind the general transcription factors TFIID and TFIIB. We now show that two acidic transactivators, herpes simplex virus VP16 and human p53, directly interact with the multisubunit human general transcription factor TFIIH and its Saccharomyces cerevisiae counterpart, factor b. The VP16- and p53-binding domains in these factors lie in the p62 subunit of TFIIH and in the homologous subunit, TFB1, of factor b. Point mutations in VP16 that reduce its transactivation activity in both yeast and mammalian cells weaken its binding to both yeast and human TFIIH. This suggests that binding of activation domains to TFIIH is an important aspect of transcriptional activation.


1996 ◽  
Vol 16 (3) ◽  
pp. 839-846 ◽  
Author(s):  
E M Newton ◽  
U Knauf ◽  
M Green ◽  
R E Kingston

Heat shock factor (HSF) activates transcription in response to cellular stress. Human HSF1 has a central regulatory domain which can repress the activity of its activation domains at the control temperature and render them heat shock inducible. To determine whether the regulatory domain works in tandem with specific features of the HSF1 transcriptional activation domains, we first used deletion and point mutagenesis to define these activation domains. One of the activation domains can be reduced to just 20 amino acids. A GAL4 fusion protein containing the HSF 1 regulatory domain and this 20-amino-acid activation domain is repressed at the control temperature but potently activates transcription in response to heat shock. No specific amino acids in this activation domain are required for response to the regulatory domain; in particular, none of the potentially phosphorylated serine and threonine residues are required for heat induction, implying that heat-induced phosphorylation of the transcriptional activation domains is not required for induction. The regulatory domain is able to confer heat responsiveness to an otherwise completely heterologous chimeric activator that contains a portion of the VP16 activation domain, suggesting that the regulatory domain can sense heat in the absence of other portions of HSF1.


1994 ◽  
Vol 14 (6) ◽  
pp. 3927-3937
Author(s):  
M Kretzschmar ◽  
G Stelzer ◽  
R G Roeder ◽  
M Meisterernst

We have isolated from a crude Hela cell cofactor fraction (USA) a novel positive cofactor that cooperates with the general transcription machinery to effect efficient stimulation of transcription by GAL4-AH, a derivative of the Saccharomyces cerevisiae regulatory factor GAL4. PC2 was shown to be a 500-kDa protein complex and to be functionally and biochemically distinct from native TFIID and previously identified cofactors. In the presence of native TFIID and other general factors, PC2 was necessary and sufficient for activation by GAL4-AH. Cofactor function was specific for transcriptional activation domains of GAL4-AH. The repressor histone H1 further potentiated but was not required for activation of transcription by GAL4-AH. On the basis of the observation that PC2 exerts entirely positive effects on transcription, we propose a model in which PC2 increases the activity of the preinitiation complex in the presence of an activator, thereby establishing a specific pathway during activation of RNA polymerase II.


1993 ◽  
Vol 13 (3) ◽  
pp. 1666-1674 ◽  
Author(s):  
P A Moore ◽  
S M Ruben ◽  
C A Rosen

The NF-kappa B transcription factor complex is composed of a 50-kDa (p50) and a 65-kDa (p65) subunit. Both subunits bind to similar DNA motifs and elicit transcriptional activation as either homo- or heterodimers. By using chimeric proteins that contain the DNA binding domain of the yeast transcriptional activator GAL4 and subdomains of p65, three distinct transcriptional activation domains were identified. One domain was localized to a region of 42 amino acids containing a potential leucin zipper structure, consistent with earlier reports. Two other domains, both acidic and rich in prolines, were also identified. Of perhaps more significance, the same minimal activation domains that were functional in mammalian cells were also functional in the yeast Saccharomyces cerevisiae. Coexpression of the NF-kappa B inhibitory molecule, I kappa B, reduced the transcriptional activity of p65 significantly, suggesting the ability of I kappa B to function in a similar manner in S. cerevisiae. Surprisingly, while the conserved rel homology domain of p65 demonstrated no transcriptional activity in either mammalian cells or S. cerevisiae, the corresponding domain in p50 was a strong transcriptional activator in S. cerevisiae. The observation that similar domains elicit transcriptional activation in mammalian cells and S. cerevisiae demonstrates strong conservation of the transcriptional machinery required for NF-kappa B function and provides a powerful genetic system to study the transcriptional mechanisms of these proteins.


1995 ◽  
Vol 15 (6) ◽  
pp. 3354-3362 ◽  
Author(s):  
M Green ◽  
T J Schuetz ◽  
E K Sullivan ◽  
R E Kingston

Human heat shock factor 1 (HSF1) stimulates transcription from heat shock protein genes following stress. We have used chimeric proteins containing the GAL4 DNA binding domain to identify the transcriptional activation domains of HSF1 and a separate domain that is capable of regulating activation domain function. This regulatory domain conferred heat shock inducibility to chimeric proteins containing the activation domains. The regulatory domain is located between the transcriptional activation domains and the DNA binding domain of HSF1 and is conserved between mammalian and chicken HSF1 but is not found in HSF2 or HSF3. The regulatory domain was found to be functionally homologous between chicken and human HSF1. This domain does not affect DNA binding by the chimeric proteins and does not contain any of the sequences previously postulated to regulate DNA binding of HSF1. Thus, we suggest that activation of HSF1 by stress in humans is controlled by two regulatory mechanisms that separately confer heat shock-induced DNA binding and transcriptional stimulation.


Sign in / Sign up

Export Citation Format

Share Document