scholarly journals The Formation of an Insulin-responsive Vesicular Cargo Compartment Is an Early Event in 3T3-L1 Adipocyte Differentiation

1999 ◽  
Vol 10 (5) ◽  
pp. 1581-1594 ◽  
Author(s):  
Amr K. El-Jack ◽  
Konstantin V. Kandror ◽  
Paul F. Pilch

Differentiating 3T3-L1 cells exhibit a dramatic increase in the rate of insulin-stimulated glucose transport during their conversion from proliferating fibroblasts to nonproliferating adipocytes. On day 3 of 3T3-L1 cell differentiation, basal glucose transport and cell surface transferrin binding are markedly diminished. This occurs concomitant with the formation of a distinct insulin-responsive vesicular pool of intracellular glucose transporter 1 (GLUT1) and transferrin receptors as assessed by sucrose velocity gradients. The intracellular distribution of the insulin-responsive aminopeptidase is first readily detectable on day 3, and its gradient profile and response to insulin at this time are identical to that of GLUT1. With further time of differentiation, GLUT4 is expressed and targeted to the same insulin-responsive vesicles as the other three proteins. Our data are consistent with the notion that a distinct insulin-sensitive vesicular cargo compartment forms early during fat call differentiation and its formation precedes GLUT4 expression. The development of this compartment may result from the differentiation-dependent inhibition of constitutive GLUT1 and transferrin receptor trafficking such that there is a large increase in, or the new formation of, a population of postendosomal, insulin-responsive vesicles.

2019 ◽  
Vol 20 (20) ◽  
pp. 4993 ◽  
Author(s):  
Dengler ◽  
Gäbel

The intestinal epithelium is able to adapt to varying blood flow and, thus, oxygen availability. Still, the adaptation fails under pathologic situations. A better understanding of the mechanisms underlying the epithelial adaptation to hypoxia could help to improve the therapeutic approach. We hypothesized that the short-term adaptation to hypoxia is mediated via AMP-activated protein kinase (AMPK) and that it is coupled to the long-term adaptation by a common regulation mechanism, the HIF-hydroxylase enzymes. Further, we hypothesized the transepithelial transport of glucose to be part of this short-term adaptation. We conducted Ussing chamber studies using isolated lagomorph jejunum epithelium and cell culture experiments with CaCo-2 cells. The epithelia and cells were incubated under 100% and 21% O2, respectively, with the panhydroxylase inhibitor dimethyloxalylglycine (DMOG) or under 1% O2. We showed an activation of AMPK under hypoxia and after incubation with DMOG by Western blot. This could be related to functional effects like an impairment of Na+-coupled glucose transport. Inhibitor studies revealed a recruitment of glucose transporter 1 under hypoxia, but not after incubation with DMOG. Summing up, we showed an influence of hydroxylase enzymes on AMPK activity and similarities between hypoxia and the effects of hydroxylase inhibition on functional changes.


2011 ◽  
Vol 300 (4) ◽  
pp. C927-C936 ◽  
Author(s):  
Rosa Fernandes ◽  
Ken-ichi Hosoya ◽  
Paulo Pereira

Retinal endothelial cells are believed to play an important role in the pathogenesis of diabetic retinopathy. In previous studies, we and others demonstrated that glucose transporter 1 (GLUT1) is downregulated in response to hyperglycemia. Increased oxidative stress is likely to be the event whereby hyperglycemia is transduced into endothelial cell damage. However, the effects of sustained oxidative stress on GLUT1 regulation are not clearly established. The objective of this study is to evaluate the effect of increased oxidative stress on glucose transport and on GLUT1 subcellular distribution in a retinal endothelial cell line and to elucidate the signaling pathways associated with such regulation. Conditionally immortalized rat retinal endothelial cells (TR-iBRB) were incubated with glucose oxidase, which increases the intracellular hydrogen peroxide levels, and GLUT1 regulation was investigated. The data showed that oxidative stress did not alter the total levels of GLUT1 protein, although the levels of mRNA were decreased, and there was a subcellular redistribution of GLUT1, decreasing its content at the plasma membrane. Consistently, the half-life of the protein at the plasma membrane markedly decreased under oxidative stress. The proteasome appears to be involved in GLUT1 regulation in response to oxidative stress, as revealed by an increase in stabilization of the protein present at the plasma membrane and normalization of glucose transport following proteasome inhibition. Indeed, levels of ubiquitinated GLUT1 increase as revealed by immunoprecipitation assays. Furthermore, data indicate that protein kinase B activation is involved in the stabilization of GLUT1 at the plasma membrane. Thus subcellular redistribution of GLUT1 under conditions of oxidative stress is likely to contribute to the disruption of glucose homeostasis in diabetes.


2015 ◽  
Vol 308 (10) ◽  
pp. C827-C834 ◽  
Author(s):  
Jay M. Sage ◽  
Anthony J. Cura ◽  
Kenneth P. Lloyd ◽  
Anthony Carruthers

Glucose transporter 1 (GLUT1) is the primary glucose transport protein of the cardiovascular system and astroglia. A recent study proposes that caffeine uncompetitive inhibition of GLUT1 results from interactions at an exofacial GLUT1 site. Intracellular ATP is also an uncompetitive GLUT1 inhibitor and shares structural similarities with caffeine, suggesting that caffeine acts at the previously characterized endofacial GLUT1 nucleotide-binding site. We tested this by confirming that caffeine uncompetitively inhibits GLUT1-mediated 3- O-methylglucose uptake in human erythrocytes [ Vmax and Km for transport are reduced fourfold; Ki(app) = 3.5 mM caffeine]. ATP and AMP antagonize caffeine inhibition of 3- O-methylglucose uptake in erythrocyte ghosts by increasing Ki(app) for caffeine inhibition of transport from 0.9 ± 0.3 mM in the absence of intracellular nucleotides to 2.6 ± 0.6 and 2.4 ± 0.5 mM in the presence of 5 mM intracellular ATP or AMP, respectively. Extracellular ATP has no effect on sugar uptake or its inhibition by caffeine. Caffeine and ATP displace the fluorescent ATP derivative, trinitrophenyl-ATP, from the GLUT1 nucleotide-binding site, but d-glucose and the transport inhibitor cytochalasin B do not. Caffeine, but not ATP, inhibits cytochalasin B binding to GLUT1. Like ATP, caffeine renders the GLUT1 carboxy-terminus less accessible to peptide-directed antibodies, but cytochalasin B and d-glucose do not. These results suggest that the caffeine-binding site bridges two nonoverlapping GLUT1 endofacial sites—the regulatory, nucleotide-binding site and the cytochalasin B-binding site. Caffeine binding to GLUT1 mimics the action of ATP but not cytochalasin B on sugar transport. Molecular docking studies support this hypothesis.


2002 ◽  
Vol 173 (2) ◽  
pp. 335-343 ◽  
Author(s):  
MF Riera ◽  
SB Meroni ◽  
HF Schteingart ◽  
EH Pellizzari ◽  
SB Cigorraga

By using cultured rat Sertoli cells as a model, both the action of basic fibroblast growth factor (bFGF) on lactate production and the site of this action were studied. bFGF stimulated Sertoli cell lactate production in a dose-dependent manner (basal: 7.3+/-0.5; 0.1 ng/ml bFGF: 7.5+/-0.5; 1 ng/ml bFGF: 7.5+/-0.6; 10 ng/ml bFGF: 10.3+/-1.0; 30 ng/ml bFGF: 15.2+/-1.5; 50 ng/ml bFGF: 15.4+/-1.6 microg/microg DNA). Two major sites for the action of this growth factor were identified. First, bFGF was shown to exert short- and long-term stimulatory effects on glucose transport (basal: 1170+/-102; 30 ng/ml bFGF for 120 min: 1718+/-152 and basal: 718+/-64; 30 ng/ml bFGF for 48 h: 1069+/-69 d.p.m./microg DNA respectively). Short-term bFGF stimulation of glucose transport was not inhibited by the protein synthesis inhibitor cycloheximide. These results indicate that short-term bFGF stimulation of glucose uptake does not involve an increase in the number of glucose transporters. On the other hand, stimulation with bFGF for periods of time longer than 12 h increased glucose transporter 1 (GLUT1) mRNA levels. These increased mRNA levels were probably ultimately responsible for the increments in glucose uptake that are observed in long-term treated cultures. Secondly, bFGF increased lactate dehydrogenase (LDH) activity (basal: 31.0+/-1.4; 30 ng/ml bFGF: 45.7+/- 2.4 mIU/microg DNA). The principal subunit component of those LDH isozymes that favors the transformation of pyruvate to lactate is subunit A. bFGF increased LDH A mRNA levels in a dose- and time-dependent manner. In summary, the results presented herein show that glucose transport, LDH activity and GLUT1 and LDH A mRNA levels are regulated by bFGF to achieve an increase in lactate production. These observed regulatory actions provide unequivocal evidence of the participation of bFGF in Sertoli cell lactate production which may be related to normal germ cell development.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Chutwadee Krisanapun ◽  
Seong-Ho Lee ◽  
Penchom Peungvicha ◽  
Rungravi Temsiririrkkul ◽  
Seung Joon Baek

Abutilon indicum(L.) Sweet is an Asian phytomedicine traditionally used to treat several disorders, including diabetes mellitus. However, molecular mechanisms supporting the antidiabetic effect ofA. indicumL. remain unknown. The aim of this study was to evaluate whether extract ofA. indicumL. improves insulin sensitivity. First, we observed the antidiabetic activity of aqueous extract of the entire plant (leaves, twigs and roots) ofA. indicumL. on postprandial plasma glucose in diabetic rats. The subsequent experiments revealed that butanol fractions of the extract bind to PPARγand activate 3T3-L1 differentiation. To measure glucose uptake enhanced by insulin-like activity, we used rat diaphragm incubated with various concentrations of the crude extract and found that the extract enhances glucose consumption in the incubated solution. Our data also indicate that the crude extract and the fractions (water and butanol) did not affect the activity of kinases involved in Akt and GSK-3βpathways; however, the reporter assay showed that the crude extract could activate glucose transporter 1 (GLUT1) promoter activity. These results suggest that the extract fromA. indicumL. may be beneficial for reducing insulin resistance through its potency in regulating adipocyte differentiation through PPARγagonist activity, and increasing glucose utilization via GLUT1.


Endocrinology ◽  
2012 ◽  
Vol 153 (4) ◽  
pp. 1783-1794 ◽  
Author(s):  
Sybille D. Reichardt ◽  
Michael Föller ◽  
Rexhep Rexhepaj ◽  
Ganesh Pathare ◽  
Kerstin Minnich ◽  
...  

Glucocorticoid (GC) treatment of inflammatory disorders, such as inflammatory bowel disease, causes deranged metabolism, in part by enhanced intestinal resorption of glucose. However, the underlying molecular mechanism is poorly understood. Hence, we investigated transcriptional control of genes reported to be involved in glucose uptake in the small intestine after GC treatment and determined effects of GC on electrogenic glucose transport from transepithelial currents. GRvillinCre mice lacking the GC receptor (GR) in enterocytes served to identify the target cell of GC treatment and the requirement of the GR itself; GRdim mice impaired in dimerization and DNA binding of the GR were used to determine the underlying molecular mechanism. Our findings revealed that oral administration of dexamethasone to wild-type mice for 3 d increased mRNA expression of serum- and GC-inducible kinase 1, sodium-coupled glucose transporter 1, and Na+/H+ exchanger 3, as well as electrogenic glucose transport in the small intestine. In contrast, GRvillinCre mice did not respond to GC treatment, neither with regard to gene activation nor to glucose transport. GRdim mice were also refractory to GC, because dexamethasone treatment failed to increase both, gene expression and electrogenic glucose transport. In addition, the rise in blood glucose levels normally observed after GC administration was attenuated in both mutant mouse strains. We conclude that enhanced glucose transport in vivo primarily depends on gene regulation by the dimerized GR in enterocytes, and that this mechanism contributes to GC-induced hyperglycemia.


2017 ◽  
Vol 123 (6) ◽  
pp. 1487-1500 ◽  
Author(s):  
Franziska Dengler ◽  
Reiko Rackwitz ◽  
Helga Pfannkuche ◽  
Gotthold Gäbel

The gastrointestinal epithelium possesses adaptation mechanisms to cope with huge variations in blood flow and subsequently oxygenation. Since sufficient energy supply is crucial under hypoxic conditions, glucose uptake especially must be regulated by these adaptation mechanisms. Therefore, we investigated glucose transport under hypoxic conditions. Jejunal epithelia of rabbits were incubated in Ussing chambers under short-circuit current conditions. Hypoxia was simulated by gassing with 1% O2 instead of 100% O2. The activity of sodium-coupled glucose transporter-1 (SGLT-1) was assessed by measuring the increase of short circuit current ( Isc) after the addition of 2 mM glucose to the mucosal buffer solution. We observed decreased activity of SGLT-1 after hypoxia compared with control conditions. To investigate underlying mechanisms, epithelia were exposed to agonists and antagonists of AMP-activated protein kinase (AMPK) before assessment of SGLT-1-mediated transport and the pAMPK/AMPK protein ratio. Preincubation with the antagonist restored SGLT-1 activity under hypoxic conditions to the level of control conditions, indicating an involvement of AMPK in the downregulation of SGLT-1 activity under hypoxia, which was confirmed in Western blot analysis of pAMPK/AMPK. Transepithelial flux studies using radioactively labeled glucose, ortho-methyl-glucose, fructose, and mannitol revealed no changes after hypoxic incubation. Therefore, we could exclude a decreased transepithelial glucose transport rate and increased paracellular conductance under hypoxia. In conclusion, our study hints at a decreased activity of SGLT-1 under hypoxic conditions in an AMPK-dependent manner. However, transepithelial transport of glucose is maintained. Therefore, we suggest other transport mechanisms, especially glucose transporter 1 and/or 2 to substitute SGLT-1 under hypoxia. NEW & NOTEWORTHY To our knowledge, this is the first approach to simulate hypoxia and study its effects in the jejunal epithelium using the Ussing chamber technique. We were able show that AMPK plays a role in the downregulation of SGLT-1 and that there seems to be an upregulation of other glucose transport mechanisms in the apical membrane of lagomorph jejunum epithelium under hypoxia, securing the epithelial energy supply and thus integrity.


2000 ◽  
Vol 373 (1) ◽  
pp. 72-82 ◽  
Author(s):  
Satoshi Ito ◽  
Takahiro Nemoto ◽  
Shinobu Satoh ◽  
Hisahiko Sekihara ◽  
Yousuke Seyama ◽  
...  

2001 ◽  
Vol 356 (3) ◽  
pp. 769-777 ◽  
Author(s):  
Emi FONTANA ◽  
Jérémie BOUCHER ◽  
Luc MARTI ◽  
José Miguel LIZCANO ◽  
Xavier TESTAR ◽  
...  

We have previously reported that substrates of monoamine oxidase (MAO) and semicarbazide-sensitive amine oxidase (SSAO) exert short-term insulin-like effects in rat adipocytes, such as stimulation of glucose transport. In the present work, we studied whether these substrates could also mimic long-term actions of insulin. Adipose differentiation of 3T3 F442A cells, which is highly insulin-dependent, served as a model to test the effects of sustained administration of amine oxidase substrates. Daily treatment of confluent cells with 0.75mM tyramine (a substrate of MAO and SSAO) or benzylamine (a substrate of SSAO) over 1 week caused the acquisition of typical adipocyte morphology. The stimulation of protein synthesis and triacylglycerol accumulation caused by tyramine or benzylamine reached one half of that promoted by insulin. This effect was insensitive to pargyline (an MAO inhibitor), but was inhibited by semicarbazide (an SSAO inhibitor) and by N-acetylcysteine (an antioxidant agent), suggesting the involvement of the H2O2 generated during SSAO-dependent amine oxidation. Chronic administration of amine oxidase substrates also induced the emergence of adipose conversion markers, such as aP2, glycerol-3-phosphate dehydrogenase, the glucose transporter GLUT4, and SSAO itself. Moreover, cells treated with amines acquired the same insulin sensitivity regarding glucose transport as adipocytes classically differentiated with insulin. In all, most of the adipogenic effects of amines were additive to insulin. Our data reveal that amine oxidase substrates partially mimic the adipogenic effect of insulin in cultured preadipocytes. Furthermore, they suggest that SSAO not only represents a novel late marker of adipogenesis, but could also be directly involved in the triggering of terminal adipocyte differentiation.


1996 ◽  
Vol 150 (2) ◽  
pp. 319-327 ◽  
Author(s):  
M Sakata ◽  
M Yamaguchi ◽  
T Imai ◽  
C Tadokoro ◽  
Y Yoshimoto ◽  
...  

Abstract Glucose plays an important role in fetal development and energy metabolism. Facilitative glucose transporter-1 (GLUT1) has been found in placenta. However, little is known about GLUT1 modulation in placental cells. To examine changes in mouse placental GLUT1 levels caused by 8-bromo-cAMP, we performed 2-deoxyglucose uptake experiments, Northern blot analysis and immunoblot analysis using a primary mouse placental cell culture. Immunohistochemical analysis showed that GLUT1 was localized to the ectoplacental cone and the labyrinth zone of mouse placentas on days 7 and 11 of pregnancy respectively. Treatment of mouse placental cells with 250 μmol/l 8-bromo-cAMP resulted in a significant (P<0·01) decrease in glucose uptake on days 2–5 of culture. The inhibitory effect of 8-bromo-cAMP on glucose uptake was concentration-dependent. Glucose uptake was also inhibited by 100 μg/l cholera toxin and by 0·1 mmol/l forskolin. Northern blot and immunoblot analysis revealed that both GLUT1 mRNA and protein levels were also decreased by 8-bromo-cAMP. These findings suggest that 8-bromo-cAMP inhibits glucose transport activity in mouse placental cells in culture. Journal of Endocrinology (1996) 150, 319–327


Sign in / Sign up

Export Citation Format

Share Document