8-Bromo-cAMP inhibits glucose transport activity in mouse placental cells in culture
Abstract Glucose plays an important role in fetal development and energy metabolism. Facilitative glucose transporter-1 (GLUT1) has been found in placenta. However, little is known about GLUT1 modulation in placental cells. To examine changes in mouse placental GLUT1 levels caused by 8-bromo-cAMP, we performed 2-deoxyglucose uptake experiments, Northern blot analysis and immunoblot analysis using a primary mouse placental cell culture. Immunohistochemical analysis showed that GLUT1 was localized to the ectoplacental cone and the labyrinth zone of mouse placentas on days 7 and 11 of pregnancy respectively. Treatment of mouse placental cells with 250 μmol/l 8-bromo-cAMP resulted in a significant (P<0·01) decrease in glucose uptake on days 2–5 of culture. The inhibitory effect of 8-bromo-cAMP on glucose uptake was concentration-dependent. Glucose uptake was also inhibited by 100 μg/l cholera toxin and by 0·1 mmol/l forskolin. Northern blot and immunoblot analysis revealed that both GLUT1 mRNA and protein levels were also decreased by 8-bromo-cAMP. These findings suggest that 8-bromo-cAMP inhibits glucose transport activity in mouse placental cells in culture. Journal of Endocrinology (1996) 150, 319–327