scholarly journals Effects of Genome Position and the DNA Damage Checkpoint on the Structure and Frequency of sod2 Gene Amplification in Fission Yeast

1999 ◽  
Vol 10 (7) ◽  
pp. 2199-2208 ◽  
Author(s):  
Thomas E. Patterson ◽  
Elizabeth B. Albrecht ◽  
Paul Nurse ◽  
Shelley Sazer ◽  
George R. Stark

The Schizosaccharomyces pombe sod2 gene, located near the telomere on the long arm of chromosome I, encodes a Na+ (or Li+)/H+ antiporter. Amplification of sod2 has previously been shown to confer resistance to LiCl. We analyzed 20 independent LiCl-resistant strains and found that the only observed mechanism of resistance is amplification of sod2. The amplicons are linear, extrachromosomal elements either 225 or 180 kb long, containing bothsod2 and telomere sequences. To determine whether proximity to a telomere is necessary for sod2amplification, a strain was constructed in which the gene was moved to the middle of the same chromosomal arm. Selection of LiCl-resistant strains in this genetic background also yielded amplifications ofsod2, but in this case the amplified DNA was exclusively chromosomal. Thus, proximity to a telomere is not a prerequisite for gene amplification in S. pombe but does affect the mechanism. Relative to wild-type cells, mutants with defects in the DNA damage aspect of the rad checkpoint control pathway had an increased frequency of sod2 amplification, whereas mutants defective in the S-phase completion checkpoint did not. Two models for generating the amplified DNA are presented.

2000 ◽  
Vol 11 (3) ◽  
pp. 873-886 ◽  
Author(s):  
Elizabeth B. Albrecht ◽  
Aaron B. Hunyady ◽  
George R. Stark ◽  
Thomas E. Patterson

Gene amplification in eukaryotes plays an important role in drug resistance, tumorigenesis, and evolution. TheSchizosaccharomyces pombe sod2 gene provides a useful model system to analyze this process. sod2 is near the telomere of chromosome I and encodes a plasma membrane Na+(Li+)/H+ antiporter. Whensod2 is amplified, S. pombe survives otherwise lethal concentrations of LiCl, and >90% of the amplifiedsod2 genes are found in 180- and 225-kilobase (kb) linear amplicons. The sequence of the novel joint of the 180-kb amplicon indicates that it is formed by recombination between homologous regions near the telomeres of the long arm of chromosome I and the short arm of chromosome II. The 225-kb amplicon, isolated three times more frequently than the 180-kb amplicon, is a palindrome derived from a region near the telomere of chromosome I. The center of symmetry of this palindrome contains an inverted repeat consisting of two identical 134-base pair sequences separated by a 290-base pair spacer. LiCl-resistant mutants arise 200–600 times more frequently in strains deficient for topoisomerases or DNA ligase activity than in wild-type strains, but the mutant cells contain the same amplicons. These data suggest that amplicon formation may begin with DNA lesions such as breaks. In the case of the 225-kb amplicon, the breaks may lead to a hairpin structure, which is then replicated to form a double-stranded linear amplicon, or to a cruciform structure, which is then resolved to yield the same amplicon.


1999 ◽  
Vol 19 (8) ◽  
pp. 5535-5547 ◽  
Author(s):  
Tadayuki Takeda ◽  
Keiko Ogino ◽  
Etsuko Matsui ◽  
Min Kwan Cho ◽  
Hiroyuki Kumagai ◽  
...  

ABSTRACT Saccharomyces cerevisiae CDC7 encodes a serine/threonine kinase required for G1/S transition, and its related kinases are present in fission yeast as well as in higher eukaryotes, including humans. Kinase activity of Cdc7 protein depends on the regulatory subunit, Dbf4, which also interacts with replication origins. We have identified him1+ from two-hybrid screening with Hsk1, a fission yeast homologue of Cdc7 kinase, and showed that it encodes a regulatory subunit of Hsk1. Him1, identical to Dfp1, previously identified as an associated molecule of Hsk1, binds to Hsk1 and stimulates its kinase activity, which phosphorylates both catalytic and regulatory subunits as well as recombinant MCM2 protein in vitro. him1+ is essential for DNA replication in fission yeast cells, and its transcription is cell cycle regulated, increasing at middle M to late G1. The protein level is low at START in G1, increases at the G1/S boundary, and is maintained at a high level throughout S phase. Him1 protein is hyperphosphorylated at G1/S through S during the cell cycle as well as in response to early S-phase arrest induced by nucleotide deprivation. Deletion of one of the motifs conserved in regulatory subunits for Cdc7-related kinases as well as alanine substitution of three serine and threonine residues present in the same motif resulted in a defect in checkpoint regulation normally induced by hydroxyurea treatment. The alanine mutant also showed growth retardation after UV irradiation and the addition of methylmethane sulfonate. In keeping with this result, a database search indicates that him1+ is identical to rad35+ . Our results reveal a novel function of the Cdc7/Dbf4-related kinase complex in S-phase checkpoint control as well as in growth recovery from DNA damage in addition to its predicted essential function in S-phase initiation.


Cell Division ◽  
2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Muhseena N. Katheeja ◽  
Shankar Prasad Das ◽  
Suparna Laha

Abstract Background The budding yeast protein Chl1p is a nuclear protein required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination, ageing and plays an instrumental role in chromatin remodeling. This helicase is known to preserve genome integrity and spindle length in S-phase. Here we show additional roles of Chl1p at G1/S phase of the cell cycle following DNA damage. Results G1 arrested cells when exposed to DNA damage are more sensitive and show bud emergence with faster kinetics in chl1 mutants compared to wild-type cells. Also, more damage to DNA is observed in chl1 cells. The viability falls synergistically in rad24chl1 cells. The regulation of Chl1p on budding kinetics in G1 phase falls in line with Rad9p/Chk1p and shows a synergistic effect with Rad24p/Rad53p. rad9chl1 and chk1chl1 shows similar bud emergence as the single mutants chl1, rad9 and chk1. Whereas rad24chl1 and rad53chl1 shows faster bud emergence compared to the single mutants rad24, rad53 and chl1. In presence of MMS induced damage, synergistic with Rad24p indicates Chl1p’s role as a checkpoint at G1/S acting parallel to damage checkpoint pathway. The faster movement of DNA content through G1/S phase and difference in phosphorylation profile of Rad53p in wild type and chl1 cells confirms the checkpoint defect in chl1 mutant cells. Further, we have also confirmed that the checkpoint defect functions in parallel to the damage checkpoint pathway of Rad24p. Conclusion Chl1p shows Rad53p independent bud emergence and Rad53p dependent checkpoint activity in presence of damage. This confirms its requirement in two different pathways to maintain the G1/S arrest when cells are exposed to damaging agents. The bud emergence kinetics and DNA segregation were similar to wild type when given the same damage in nocodazole treated chl1 cells which establishes the absence of any role of Chl1p at the G2/M phase. The novelty of this paper lies in revealing the versatile role of Chl1p in checkpoints as well as repair towards regulating G1/S transition. Chl1p thus regulates the G1/S phase by affecting the G1 replication checkpoint pathway and shows an additive effect with Rad24p for Rad53p activation when damaging agents perturb the DNA. Apart from checkpoint activation, it also regulates the budding kinetics as a repair gene.


2021 ◽  
Author(s):  
Katheeja Muhseena N. ◽  
Shankar Prasad Das ◽  
Suparna Laha

Abstract Background: The helicase Chl1p is a nuclear protein required for sister-chromatid cohesion, transcriptional silencing, rDNA recombination, ageing and plays an instrumental role in chromatin remodeling. This budding yeast protein is known to preserve genome integrity and spindle length in S-phase. Here we show additional roles of Chl1p at G1/S phase of the cell cycle following DNA damage. Results: G1 arrested cells when exposed to DNA damage are more sensitive and show bud emergence with a faster kinetics in chl1 mutants compared to wild-type cells. This role of Chl1p in G1 phase is Rad9p dependent and independent of Rad24 and Rad53. rad9chl1 shows similar bud emergence as the single mutants chl1 and rad9 whereas rad24chl1 and rad53chl1 shows faster bud emergence compared to the single mutants rad24 , rad53 and chl1 . In case of damage induced by genotoxic agent like hydroxyurea, Chl1p acts as a checkpoint at G1/S. The faster movement of DNA content through G1/S phase and difference in phosphorylation profile of Rad53p in wild type and chl1 cells confirms the checkpoint defect in chl1 mutant cells. Further we have observed that the checkpoint defect is synergistic with the replication checkpoint Sgs1p and functions in prallel to the checkpoint pathway of Rad24p. Conclusion: Chl1p shows Rad53p independent bud emergence and Rad53p dependent checkpoint, confirms its requirement in two different pathways to maintain the G1/S arrest when cells are exposed to damaging agents. The bud emergence kinetics and DNA segregation were similar to wild type when given the same damage in nocodazole treated chl1 cells which establishes the absence of any role of Chl1p at the G2/M phase. The novelty of this paper lies in revealing the versatile role of Chl1p in checkpoints as well as repair towards regulating G1/S transition. Chl1 thus regulates the G1/S phase by affecting the G1 replication checkpoint pathway and shows an additive effect with Rad24p as well as Rad53p activation when damaging agents perturbs the DNA.


2009 ◽  
Vol 35 (3) ◽  
pp. 327-339 ◽  
Author(s):  
Neil Johnson ◽  
Dongpo Cai ◽  
Richard D. Kennedy ◽  
Shailja Pathania ◽  
Mansi Arora ◽  
...  

2001 ◽  
Vol 21 (6) ◽  
pp. 1997-2007 ◽  
Author(s):  
Duncan J. Clarke ◽  
Guillaume Mondesert ◽  
Marisa Segal ◽  
Bonnie L. Bertolaet ◽  
Sanne Jensen ◽  
...  

ABSTRACT In budding yeast, anaphase initiation is controlled by ubiquitin-dependent degradation of Pds1p. Analysis of pds1mutants implicated Pds1p in the DNA damage, spindle assembly, and S-phase checkpoints. Though some components of these pathways are known, others remain to be identified. Moreover, the essential function of Pds1p, independent of its role in checkpoint control, has not been elucidated. To identify loci that genetically interact withPDS1, we screened for dosage suppressors of a temperature-sensitive pds1 allele, pds1-128, defective for checkpoint control at the permissive temperature and essential for viability at 37°C. Genetic and functional interactions of two suppressors are described. RAD23 andDDI1 suppress the temperature and hydroxyurea, but not radiation or nocodazole, sensitivity of pds1-128. rad23 and ddi1 mutants are partially defective in S-phase checkpoint control but are proficient in DNA damage and spindle assembly checkpoints. Therefore, Rad23p and Ddi1p participate in a subset of Pds1p-dependent cell cycle controls. Both Rad23p and Ddi1p contain ubiquitin-associated (UBA) domains which are required for dosage suppression of pds1-128. UBA domains are found in several proteins involved in ubiquitin-dependent proteolysis, though no function has been assigned to them. Deletion of the UBA domains of Rad23p and Ddi1p renders cells defective in S-phase checkpoint control, implicating UBA domains in checkpoint signaling. Since Pds1p destruction, and thus checkpoint regulation of mitosis, depends on ubiquitin-dependent proteolysis, we propose that the UBA domains functionally interact with the ubiquitin system to control Pds1p degradation in response to checkpoint activation.


2005 ◽  
Vol 16 (4) ◽  
pp. 1651-1660 ◽  
Author(s):  
Daniel G. Pankratz ◽  
Susan L. Forsburg

Checkpoints operate during meiosis to ensure the completion of DNA synthesis and programmed recombination before the initiation of meiotic divisions. Studies in the fission yeast Schizosaccharomyces pombe suggest that the meiotic response to DNA damage due to a failed replication checkpoint response differs substantially from the vegetative response, and may be influenced by the presence of homologous chromosomes. The checkpoint responses to DNA damage during fission yeast meiosis are not well characterized. Here we report that DNA damage induced during meiotic S-phase does not activate checkpoint arrest. We also find that in wild-type cells, markers for DNA breaks can persist at least to the first meiotic division. We also observe increased spontaneous S-phase damage in checkpoint mutants, which is repaired by recombination without activating checkpoint arrest. Our results suggest that fission yeast meiosis is exceptionally tolerant of DNA damage, and that some forms of spontaneous S-phase damage can be repaired by recombination without activating checkpoint arrest.


1999 ◽  
Vol 10 (11) ◽  
pp. 3661-3674 ◽  
Author(s):  
Colin P. C. De Souza ◽  
Xiang S. Ye ◽  
Stephen A. Osmani

The G2 DNA damage and slowing of S-phase checkpoints over mitosis function through tyrosine phosphorylation of NIMXcdc2 inAspergillus nidulans. We demonstrate that breaking these checkpoints leads to a defective premature mitosis followed by dramatic rereplication of genomic DNA. Two additional checkpoint functions,uvsB and uvsD, also cause the rereplication phenotype after their mutation allows premature mitosis in the presence of low concentrations of hydroxyurea.uvsB is shown to encode a rad3/ATRhomologue, whereas uvsD displays homology torad26, which has only previously been identified inSchizosaccharomyces pombe. uvsB rad3 anduvsD rad26 have G2 checkpoint functions over mitosis and another function essential for surviving DNA damage. The rereplication phenotype is accompanied by lack of NIMEcyclinB, but ectopic expression of active nondegradable NIMEcyclinB does not arrest DNA rereplication. DNA rereplication can also be induced in cells that enter mitosis prematurely because of lack of tyrosine phosphorylation of NIMXcdc2 and impaired anaphase-promoting complex function. The data demonstrate that lack of checkpoint control over mitosis can secondarily cause defects in the checkpoint system that prevents DNA rereplication in the absence of mitosis. This defines a new mechanism by which endoreplication of DNA can be triggered and maintained in eukaryotic cells.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Mark C Johnson ◽  
Geylani Can ◽  
Miguel Monteiro Santos ◽  
Diana Alexander ◽  
Philip Zegerman

Checkpoints maintain the order of cell cycle events during DNA damage or incomplete replication. How the checkpoint response is tailored to different phases of the cell cycle remains poorly understood. The S-phase checkpoint for example results in the slowing of replication, which in budding yeast occurs by Rad53-dependent inhibition of the initiation factors Sld3 and Dbf4. Despite this, we show here that Rad53 phosphorylates both of these substrates throughout the cell cycle at the same sites as in S-phase, suggesting roles for this pathway beyond S-phase. Indeed, we show that Rad53-dependent inhibition of Sld3 and Dbf4 limits re-replication in G2/M, preventing gene amplification. In addition, we show that inhibition of Sld3 and Dbf4 in G1 prevents premature initiation at all origins at the G1/S transition. This study redefines the scope of the 'S-phase checkpoint' with implications for understanding checkpoint function in cancers that lack cell cycle controls.


Genetics ◽  
1997 ◽  
Vol 145 (1) ◽  
pp. 45-62 ◽  
Author(s):  
A G Paulovich ◽  
R U Margulies ◽  
B M Garvik ◽  
L H Hartwell

We have previously shown that a checkpoint dependent on MEC1 and RAD53 slows the rate of S phase progression in Saccharomyces cerevisiae in response to alkylation damage. Whereas wild-type cells exhibit a slow S phase in response to damage, mec1-1 and rad53 mutants replicate rapidly in the presence or absence of DNA damage. In this report, we show that other genes (RAD9, RAD17, RAD24) involved in the DNA damage checkpoint pathway also play a role in regulating S phase in response to DNA damage. Furthermore, RAD9, RAD17, and RAD24 fall into two groups with respect to both sensitivity to alkylation and regulation of S phase. We also demonstrate that the more dramatic defect in S phase regulation in the mec1-1 and rad53 mutants is epistatic to a less severe defect seen in rad9Δ, rad17Δ, and rad24Δ. Furthermore, the triple rad9Δ rad17Δ rad24Δ mutant also has a less severe defect than mec1-1 or rad53 mutants. Finally, we demonstrate the specificity of this phenotype by showing that the DNA repair and/or checkpoint mutants mgt1Δ, mag1Δ, apn1Δ, rev3Δ, rad18Δ, rad16Δ, dun1-Δ100, sad4-1, tel1Δ, rad26Δ, rad51Δ, rad52-1, rad54Δ, rad14Δ, rad1Δ, pol30–46, pol30–52, mad3Δ, pds1Δ/esp2Δ, pms1Δ, mlh1Δ, and msh2Δ are all proficient at S phase regulation, even though some of these mutations confer sensitivity to alkylation.


Sign in / Sign up

Export Citation Format

Share Document