scholarly journals Quantitative Imaging of Pre-mRNA Splicing Factors in Living Cells

2000 ◽  
Vol 11 (2) ◽  
pp. 413-418 ◽  
Author(s):  
Roland Eils ◽  
Daniel Gerlich ◽  
Wolfgang Tvaruskó ◽  
David L. Spector ◽  
Tom Misteli
1994 ◽  
Vol 124 (3) ◽  
pp. 249-260 ◽  
Author(s):  
RT O'Keefe ◽  
A Mayeda ◽  
CL Sadowski ◽  
AR Krainer ◽  
DL Spector

We have examined the functional significance of the organization of pre-mRNA splicing factors in a speckled distribution in the mammalian cell nucleus. Upon microinjection into living cells of oligonucleotides or antibodies that inhibit pre-mRNA splicing in vitro, we observed major changes in the organization of splicing factors in vivo. Interchromatin granule clusters became uniform in shape, decreased in number, and increased in both size and content of splicing factors, as measured by immunofluorescence. These changes were transient and the organization of splicing factors returned to their normal distribution by 24 h following microinjection. Microinjection of these oligonucleotides or antibodies also resulted in a reduction of transcription in vivo, but the oligonucleotides did not inhibit transcription in vitro. Control oligonucleotides did not disrupt splicing or transcription in vivo. We propose that the reorganization of splicing factors we observed is the result of the inhibition of splicing in vivo.


Author(s):  
D.L. Spector ◽  
S. Huang ◽  
S. Kaurin

We have been interested in the organization of RNA polymerase II transcription and pre-mRNA splicing within the cell nucleus. Several models have been proposed for the functional organization of RNA within the eukaryotic nucleus and for the relationship of this organization to the distribution of pre-mRNA splicing factors. One model suggests that RNAs which must be spliced are capable of recruiting splicing factors to the sites of transcription from storage and/or reassembly sites. When one examines the organization of splicing factors in the nucleus in comparison to the sites of chromatin it is clear that splicing factors are not localized in coincidence with heterochromatin (Fig. 1). Instead, they are distributed in a speckled pattern which is composed of both perichromatin fibrils and interchromatin granule clusters. The perichromatin fibrils are distributed on the periphery of heterochromatin and on the periphery of interchromatin granule clusters as well as being diffusely distributed throughout the nucleoplasm. These nuclear regions have been previously shown to represent initial sites of incorporation of 3H-uridine.


Genetics ◽  
2003 ◽  
Vol 164 (3) ◽  
pp. 895-907 ◽  
Author(s):  
Kevin Vincent ◽  
Qiang Wang ◽  
Steven Jay ◽  
Kathryn Hobbs ◽  
Brian C Rymond

AbstractClf1 is a conserved spliceosome assembly factor composed predominately of TPR repeats. Here we show that the TPR elements are not functionally equivalent, with the amino terminus of Clf1 being especially sensitive to change. Deletion and add-back experiments reveal that the splicing defect associated with TPR removal results from the loss of TPR-specific sequence information. Twelve mutants were found that show synthetic growth defects when combined with an allele that lacks TPR2 (i.e., clf1Δ2). The identified genes encode the Mud2, Ntc20, Prp16, Prp17, Prp19, Prp22, and Syf2 splicing factors and four proteins without established contribution to splicing (Bud13, Cet1, Cwc2, and Rds3). Each synthetic lethal with clf1Δ2 (slc) mutant is splicing defective in a wild-type CLF1 background. In addition to the splicing factors, SSD1, BTS1, and BET4 were identified as dosage suppressors of clf1Δ2 or selected slc mutants. These results support Clf1 function through multiple stages of the spliceosome cycle, identify additional genes that promote cellular mRNA maturation, and reveal a link between Rab/Ras GTPase activation and the process of pre-mRNA splicing.


1997 ◽  
Vol 136 (1) ◽  
pp. 5-18 ◽  
Author(s):  
Lei Du ◽  
Stephen L. Warren

In the preceding study we found that Sm snRNPs and SerArg (SR) family proteins co-immunoprecipitate with Pol II molecules containing a hyperphosphorylated CTD (Kim et al., 1997). The association between Pol IIo and splicing factors is maintained in the absence of pre-mRNA, and the polymerase need not be transcriptionally engaged (Kim et al., 1997). The latter findings led us to hypothesize that a phosphorylated form of the CTD interacts with pre-mRNA splicing components in vivo. To test this idea, a nested set of CTD-derived proteins was assayed for the ability to alter the nuclear distribution of splicing factors, and to interfere with splicing in vivo. Proteins containing heptapeptides 1-52 (CTD52), 1-32 (CTD32), 1-26 (CTD26), 1-13 (CTD13), 1-6 (CTD6), 1-3 (CTD3), or 1 (CTD1) were expressed in mammalian cells. The CTD-derived proteins become phosphorylated in vivo, and accumulate in the nucleus even though they lack a conventional nuclear localization signal. CTD52 induces a selective reorganization of splicing factors from discrete nuclear domains to the diffuse nucleoplasm, and significantly, it blocks the accumulation of spliced, but not unspliced, human β-globin transcripts. The extent of splicing factor disruption, and the degree of inhibition of splicing, are proportional to the number of heptapeptides added to the protein. The above results indicate a functional interaction between Pol II's CTD and pre-mRNA splicing.


1996 ◽  
Vol 133 (5) ◽  
pp. 929-941 ◽  
Author(s):  
G Baurén ◽  
W Q Jiang ◽  
K Bernholm ◽  
F Gu ◽  
L Wieslander

We describe the dynamic organization of pre-mRNA splicing factors in the intact polytene nuclei of the dipteran Chironomus tentans. The snRNPs and an SR non-snRNP splicing factor are present in excess, mainly distributed throughout the interchromatin. Approximately 10% of the U2 snRNP and an SR non-snRNP splicing factor are associated with the chromosomes, highly enriched in active gene loci where they are bound to RNA. We demonstrate that the splicing factors are specifically recruited to a defined gene upon induction of transcription during physiological conditions. Concomitantly, the splicing factors leave gene loci in which transcription is turned off. We also demonstrated that upon general transcription inhibition, the splicing factors redistribute from active gene loci to the interchromatin. Our findings demonstrate the dynamic intranuclear organization of splicing factors and a tight linkage between transcription and the intranuclear organization of the splicing machinery.


2017 ◽  
Vol 46 (40) ◽  
pp. 13957-13965 ◽  
Author(s):  
Shuoren Du ◽  
Javier Hernández-Gil ◽  
Hao Dong ◽  
Xiaoyu Zheng ◽  
Guangming Lyu ◽  
...  

A ratiometric probe based on upconversion nanoparticles modified with a pH sensitive moiety for the quantitative imaging of pH at the subcellular level in living cells.


2018 ◽  
Vol 215 (12) ◽  
pp. 3038-3056 ◽  
Author(s):  
Zhi-Hao Wang ◽  
Pai Liu ◽  
Xia Liu ◽  
Shan Ping Yu ◽  
Jian-Zhi Wang ◽  
...  

SRPK2 is abnormally activated in tauopathies including Alzheimer’s disease (AD). SRPK2 is known to play an important role in pre–mRNA splicing by phosphorylating SR-splicing factors. Dysregulation of tau exon 10 pre–mRNA splicing causes pathological imbalances in 3R- and 4R-tau, leading to neurodegeneration; however, the role of SRPK2 in these processes remains unclear. Here we show that delta-secretase (also known as asparagine endopeptidase; AEP), which is activated in AD, cleaves SRPK2 and increases its nuclear translocation as well as kinase activity, augmenting exon 10 inclusion. Conversely, AEP-uncleavable SRPK2 N342A mutant increases exon 10 exclusion. Lentiviral expression of truncated SRPK2 increases 4R-tau isoforms and accelerates cognitive decline in htau mice. Uncleavable SRPK2 N342A expression improves synaptic functions and prevents spatial memory deficits in tau intronic mutant FTDP-17 transgenic mice. Hence, AEP mediates tau-splicing imbalance in tauopathies via cleaving SRPK2.


Oncotarget ◽  
2018 ◽  
Vol 9 (13) ◽  
pp. 11083-11099
Author(s):  
Shyam Nyati ◽  
Nauman Chaudhry ◽  
Areeb Chatur ◽  
Brandon S. Gregg ◽  
Lauren Kimmel ◽  
...  

Nature ◽  
1997 ◽  
Vol 387 (6632) ◽  
pp. 523-527 ◽  
Author(s):  
Tom Misteli ◽  
Javier F. Cáceres ◽  
David L. Spector

Sign in / Sign up

Export Citation Format

Share Document