scholarly journals Vaccinia Virus DNA Replication Occurs in Endoplasmic Reticulum-enclosed Cytoplasmic Mini-Nuclei

2001 ◽  
Vol 12 (7) ◽  
pp. 2031-2046 ◽  
Author(s):  
Nina Tolonen ◽  
Laura Doglio ◽  
Sibylle Schleich ◽  
Jacomine Krijnse Locker

Vaccinia virus (vv), a member of the poxvirus family, is unique among most DNA viruses in that its replication occurs in the cytoplasm of the infected host cell. Although this viral process is known to occur in distinct cytoplasmic sites, little is known about its organization and in particular its relation with cellular membranes. The present study shows by electron microscopy (EM) that soon after initial vv DNA synthesis at 2 h postinfection, the sites become entirely surrounded by membranes of the endoplasmic reticulum (ER). Complete wrapping requires ∼45 min and persists until virion assembly is initiated at 6 h postinfection, and the ER dissociates from the replication sites. [3H]Thymidine incorporation at different infection times shows that efficient vv DNA synthesis coincides with complete ER wrapping, suggesting that the ER facilitates viral replication. Proteins known to be associated with the nuclear envelope in interphase cells are not targeted to these DNA-surrounding ER membranes, ruling out a role for these molecules in the wrapping process. By random green fluorescent protein-tagging of vv early genes of unknown function with a putative transmembrane domain, a novel vv protein, the gene product of E8R, was identified that is targeted to the ER around the DNA sites. Antibodies raised against this vv early membrane protein showed, by immunofluorescence microscopy, a characteristic ring-like pattern around the replication site. By electron microscopy quantitation the protein concentrated in the ER surrounding the DNA site and was preferentially targeted to membrane facing the inside of this site. These combined data are discussed in relation to nuclear envelope assembly/disassembly as it occurs during the cell cycle.

2006 ◽  
Vol 17 (7) ◽  
pp. 3009-3020 ◽  
Author(s):  
Johan-Owen De Craene ◽  
Jeff Coleman ◽  
Paula Estrada de Martin ◽  
Marc Pypaert ◽  
Scott Anderson ◽  
...  

The endoplasmic reticulum (ER) contains both cisternal and reticular elements in one contiguous structure. We identified rtn1Δ in a systematic screen for yeast mutants with altered ER morphology. The ER in rtn1Δ cells is predominantly cisternal rather than reticular, yet the net surface area of ER is not significantly changed. Rtn1-green fluorescent protein (GFP) associates with the reticular ER at the cell cortex and with the tubules that connect the cortical ER to the nuclear envelope, but not with the nuclear envelope itself. Rtn1p overexpression also results in an altered ER structure. Rtn proteins are found on the ER in a wide range of eukaryotes and are defined by two membrane-spanning domains flanking a conserved hydrophilic loop. Our results suggest that Rtn proteins may direct the formation of reticulated ER. We independently identified Rtn1p in a proteomic screen for proteins associated with the exocyst vesicle tethering complex. The conserved hydophilic loop of Rtn1p binds to the exocyst subunit Sec6p. Overexpression of this loop results in a modest accumulation of secretory vesicles, suggesting impaired exocyst function. The interaction of Rtn1p with the exocyst at the bud tip may trigger the formation of a cortical ER network in yeast buds.


2000 ◽  
Vol 11 (3) ◽  
pp. 897-914 ◽  
Author(s):  
Mark Terasaki

The endoplasmic reticulum (ER) and Golgi were labeled by green fluorescent protein chimeras and observed by time-lapse confocal microscopy during the rapid cell cycles of sea urchin embryos. The ER undergoes a cyclical microtubule-dependent accumulation at the mitotic poles and by photobleaching experiments remains continuous through the cell cycle. Finger-like indentations of the nuclear envelope near the mitotic poles appear 2–3 min before the permeability barrier of the nuclear envelope begins to change. This permeability change in turn is ∼30 s before nuclear envelope breakdown. During interphase, there are many scattered, disconnected Golgi stacks throughout the cytoplasm, which appear as 1- to 2-μm fluorescent spots. The number of Golgi spots begins to decline soon after nuclear envelope breakdown, reaches a minimum soon after cytokinesis, and then rapidly increases. At higher magnification, smaller spots are seen, along with increased fluorescence in the ER. Quantitative measurements, along with nocodazole and photobleaching experiments, are consistent with a redistribution of some of the Golgi to the ER during mitosis. The scattered Golgi coalesce into a single large aggregate during the interphase after the ninth embryonic cleavage; this is likely to be preparatory for secretion of the hatching enzyme during the following cleavage cycle.


Development ◽  
1999 ◽  
Vol 126 (14) ◽  
pp. 3171-3181 ◽  
Author(s):  
C.J. Malone ◽  
W.D. Fixsen ◽  
H.R. Horvitz ◽  
M. Han

Nuclear migrations are essential for metazoan development. Two nuclear migrations that occur during C. elegans development require the function of the unc-84 gene. unc-84 mutants are also defective in the anchoring of nuclei within the hypodermal syncytium and in the migrations of the two distal tip cells of the gonad. Complementation analyses of 17 unc-84 alleles defined two genetically separable functions. Both functions are required for nuclear and distal tip cell migrations, but only one is required for nuclear anchorage. The DNA lesions associated with these 17 mutations indicate that the two genetically defined functions correspond to two distinct regions of the UNC-84 protein. The UNC-84 protein has a predicted transmembrane domain and a C-terminal region with similarity to the S. pombe spindle pole body protein Sad1 and to two predicted mammalian proteins. Analysis of a green fluorescent protein reporter indicated that UNC-84 is widely expressed and localized to the nuclear envelope. We propose that UNC-84 functions to facilitate a nuclear-centrosomal interaction required for nuclear migration and anchorage.


2001 ◽  
Vol 152 (5) ◽  
pp. 935-944 ◽  
Author(s):  
Ken Sato ◽  
Miyuki Sato ◽  
Akihiko Nakano

Rer1p, a yeast Golgi membrane protein, is required for the retrieval of a set of endoplasmic reticulum (ER) membrane proteins. We present the first evidence that Rer1p directly interacts with the transmembrane domain (TMD) of Sec12p which contains a retrieval signal. A green fluorescent protein (GFP) fusion of Rer1p rapidly cycles between the Golgi and the ER. Either a lesion of coatomer or deletion of the COOH-terminal tail of Rer1p causes its mislocalization to the vacuole. The COOH-terminal Rer1p tail interacts in vitro with a coatomer complex containing α and γ subunits. These findings not only give the proof that Rer1p is a novel type of retrieval receptor recognizing the TMD in the Golgi but also indicate that coatomer actively regulates the function and localization of Rer1p.


2007 ◽  
Vol 82 (5) ◽  
pp. 2161-2169 ◽  
Author(s):  
Amalia K. Earley ◽  
Winnie M. Chan ◽  
Brian M. Ward

ABSTRACT The glycoproteins encoded by the vaccinia virus A34R and B5R genes are involved in intracellular envelope virus formation and are highly conserved among orthopoxviruses. A recombinant virus that has the A34R gene deleted and the B5R gene replaced with a B5R gene fused to the enhanced green fluorescent protein (B5R-GFP) gene was created (vB5R-GFP/ΔA34R) to investigate the role of A34 during virion morphogenesis. Cells infected with vB5R-GFP/ΔA34R displayed GFP fluorescence throughout the cytoplasm, which differed markedly from that seen in cells infected with a normal B5R-GFP-expressing virus (vB5R-GFP). Immunofluorescence and subcellular fractionation demonstrated that B5-GFP localizes with the endoplasmic reticulum in the absence of A34. Expression of either full-length A34 or a construct consisting of the lumenal and transmembrane domains restored normal trafficking of B5-GFP to the site of wrapping in the juxtanuclear region. Coimmunoprecipitation studies confirmed that B5 and A34 interact through their luminal domains, and further analysis revealed that in the absence of A34, B5 is not efficiently incorporated into virions released from the cell.


2009 ◽  
Vol 425 (1) ◽  
pp. 61-74 ◽  
Author(s):  
Evangelia Pantazaka ◽  
Colin W. Taylor

Targeting of IP3R (inositol 1,4,5-trisphosphate receptors) to membranes of the ER (endoplasmic reticulum) and their retention within ER or trafficking to other membranes underlies their ability to generate spatially organized Ca2+ signals. N-terminal fragments of IP3R1 (type 1 IP3R) were tagged with enhanced green fluorescent protein, expressed in COS-7 cells and their distribution was determined by confocal microscopy and subcellular fractionation. Localization of IP3R1 in the ER requires translation of between 26 and 34 residues beyond the end of the first transmembrane domain (TMD1), a region that includes TMD2 (second transmembrane domain). Replacement of these post-TMD1 residues with unrelated sequences of similar length (24–36 residues) partially mimicked the native residues. We conclude that for IP3R approx. 30 residues after TMD1 must be translated to allow a signal sequence within TMD1 to be extruded from the ribosome and mediate co-translational targeting to the ER. Hydrophobic residues within TMD1 and TMD2 then ensure stable association with the ER membrane.


2001 ◽  
Vol 12 (8) ◽  
pp. 2482-2496 ◽  
Author(s):  
Nica Borgese ◽  
Ilaria Gazzoni ◽  
Massimo Barberi ◽  
Sara Colombo ◽  
Emanuela Pedrazzini

Many mitochondrial outer membrane (MOM) proteins have a transmembrane domain near the C terminus and an N-terminal cytosolic moiety. It is not clear how these tail-anchored (TA) proteins posttranslationally select their target, but C-terminal charged residues play an important role. To investigate how discrimination between MOM and endoplasmic reticulum (ER) occurs, we used mammalian cytochrome b 5, a TA protein existing in two, MOM or ER localized, versions. Substitution of the seven C-terminal residues of the ER isoform or of green fluorescent protein reporter constructs with one or two arginines resulted in MOM-targeted proteins, whereas a single C-terminal threonine caused promiscuous localization. To investigate whether targeting to MOM occurs from the cytosol or after transit through the ER, we tagged a MOM-directed construct with a C-terminal N-glycosylation sequence. Although in vitro this construct was efficiently glycosylated by microsomes, the protein expressed in vivo localized almost exclusively to MOM, and was nearly completely unglycosylated. The small fraction of glycosylated protein was in the ER and was not a precursor to the unglycosylated form. Thus, targeting occurs directly from the cytosol. Moreover, ER and MOM compete for the same polypeptide, explaining the dual localization of some TA proteins.


2021 ◽  
Author(s):  
Noemi Ruiz-Lopez ◽  
Jessica Pérez-Sancho ◽  
Alicia Esteban del Valle ◽  
Richard P Haslam ◽  
Steffen Vanneste ◽  
...  

Abstract Endoplasmic reticulum-plasma membrane contact sites (ER-PM CS) play fundamental roles in all eukaryotic cells. Arabidopsis thaliana mutants lacking the ER-PM protein tether synaptotagmin1 (SYT1) exhibit decreased plasma membrane (PM) integrity under multiple abiotic stresses such as freezing, high salt, osmotic stress and mechanical damage. Here, we show that, together with SYT1, the stress-induced SYT3 is an ER-PM tether that also functions in maintaining PM integrity. The ER-PM CS localization of SYT1 and SYT3 is dependent on PM phosphatidylinositol-4-phosphate and is regulated by abiotic stress. Lipidomic analysis revealed that cold stress increased the accumulation of diacylglycerol at the PM in a syt1/3 double mutant relative to wild type while the levels of most glycerolipid species remain unchanged. Additionally, the SYT1-green fluorescent protein (GFP) fusion preferentially binds diacylglycerol in vivo with little affinity for polar glycerolipids. Our work uncovers a SYT-dependent mechanism of stress adaptation counteracting the detrimental accumulation of diacylglycerol at the PM produced during episodes of abiotic stress.


2001 ◽  
Vol 75 (16) ◽  
pp. 7528-7542 ◽  
Author(s):  
Matloob Husain ◽  
Bernard Moss

ABSTRACT The wrapping of intracellular mature vaccinia virions by modifiedtrans-Golgi or endosomal cisternae to form intracellular enveloped virions is dependent on at least two viral proteins encoded by the B5R and F13L open reading frames. B5R is a type I integral membrane glycoprotein, whereas F13L is an unglycosylated, palmitylated protein with a motif that is conserved in a superfamily of phospholipid-metabolizing enzymes. Microscopic visualization of the F13L protein was achieved by fusing it to the enhanced green fluorescent protein (GFP). F13L-GFP was functional when expressed by a recombinant vaccinia virus in which it replaced the wild-type F13L gene or by transfection of uninfected cells with a plasmid vector followed by infection with an F13L deletion mutant. In uninfected or infected cells, F13L-GFP was associated with Golgi cisternae and post-Golgi vesicles containing the LAMP 2 late endosomal-lysosomal marker. Association of F13L-GFP with vesicles was dependent on an intact phospholipase catalytic motif and sites of palmitylation. The B5R protein was also associated with LAMP2-containing vesicles when F13L-GFP was coexpressed, but was largely restricted to Golgi cisternae in the absence of F13L-GFP or when the F13L moiety was mutated. We suggest that the F13L protein, like its human phospholipase D homolog, regulates vesicle formation and that this process is involved in intracellular enveloped virion membrane formation.


Sign in / Sign up

Export Citation Format

Share Document